Advertisement

Russian Journal of Inorganic Chemistry

, Volume 61, Issue 11, pp 1459–1462 | Cite as

Synthesis and study of high-temperature heat capacity of erbium orthovanadate

  • L. T. DenisovaEmail author
  • L. G. Chumilina
  • Yu. F. Kargin
  • N. V. Belousova
  • V. M. Denisov
Physical Methods of Investigation

Abstract

Orthovanadate ErVO4 has been prepared by solid-phase synthesis from a stoichiometric mixture of high pure V2O5 and chemically pure Er2O3 by multistage calcination in air in the temperature range 873–1273 K. The effect of temperature (380–1000 K) on the heat capacity of orthovanadate ErVO4 was studied by hightemperature calorimetry. Thermodynamic properties of erbium orthovanadate (enthalpy change H°(T)–H°(380 K), entropy change S°(T)–S°(380 K), and reduced Gibbs energy Φ°(T)) have been calculated from the experimental C p = f(T) data. It has been shown that the specific heat varies in a row of oxides and orthovanadates of Gd-Lu naturally depending on the radius of the R3+ ion within the third and fourth tetrads.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Fotiev, B. V. Slobodin, and M. Ya. Khodos, Vanadates: Composition, Synthesis, Structure, and Properties (Nauka, Moscow, 1988) [in Russian].Google Scholar
  2. 2.
    L. T. Denisov., Yu. F. Kargin, N. V. Belousova, et al., Materialovedenie, No. 8, 18 (2014).Google Scholar
  3. 3.
    L. T. Denisova, L. G. Chumilina, and V. M. Deniso., Fiz. Tverd. Tela 57, 1034 (2015).Google Scholar
  4. 4.
    K. S. Gavrichev, M. A. Ryumin, A. V. Tyurin, and L. N. Komissarov., Neorg. Mater. 46, 867 (2010).Google Scholar
  5. 5.
    S. Zhang, S. Zhou, H. Li, et al., Inorg. Chem. 46, 7863 (2008).CrossRefGoogle Scholar
  6. 6.
    A. A. Kaminski., Dokl. Ross. Akad. Nauk 450, 279 (2013).Google Scholar
  7. 7.
    P. G. Zverev and L. I. Ivlev., Kvant. Elektron. 42 (1), 27 (2012).CrossRefGoogle Scholar
  8. 8.
    M. O. Kaya, Y. Kaya, G. Celik, et al., J. Enzyme Inhibit. Med. Chem. 30, 286 (2015).CrossRefGoogle Scholar
  9. 9.
    Z. M. Fang, J. Zou, W. Z. Weng, and H. L. Wa., Stud. Surf. Sci. Catal. 119, 629 (1998).CrossRefGoogle Scholar
  10. 10.
    K. Gaur and H. B. La., J. Mater. Sci. Lett. 2, 744 (1983).CrossRefGoogle Scholar
  11. 11.
    B. Blane., Appl. Magn. Reson. 16, 19 (1999).CrossRefGoogle Scholar
  12. 12.
    Z. A. Kazei and V. V. Snegire., Zh. Eksp. Teor. Fiz. 127, 362 (2005).Google Scholar
  13. 13.
    K. Gaur and B. La., J. Mater. Sci. 21, 2289 (1986).CrossRefGoogle Scholar
  14. 14.
    H. Brusset, F. Madaule-Aubry, B. Blanck, et al., Can. J. Chem. 49, 3700 (1971).CrossRefGoogle Scholar
  15. 15.
    J. A. Baglio and O. J. Sovers, J. Solid State Chem. 3, 458 (1971).CrossRefGoogle Scholar
  16. 16.
    H. Fuess and A. Kallel, J. Solid State Chem. 5, 11 (1972).CrossRefGoogle Scholar
  17. 17.
    K. Kitayama, T. Sugihara, and T. Katsur., Bull. Chem. Soc. Jpn. 52, 458 (1979).CrossRefGoogle Scholar
  18. 18.
    B. C. Chakoumakos, M. M. Abraham, and L. A. Boatner, J. Solid State Chem. 109, 197 (1994).CrossRefGoogle Scholar
  19. 19.
    L. T. Denisova, L. G. Chumilina, and V. M. Deniso., Fiz. Tverd. Tela 56, 2305 (2014).Google Scholar
  20. 20.
    V. M. Denisov, L. T. Denisova, L. A. Irtyugo, et al., Fiz. Tverd. Tela 52, 1274 (2010).Google Scholar
  21. 21.
    C. G. Maier and K. K. Kelle., J. Am. Chem. Soc. 54, 3243 (1932).CrossRefGoogle Scholar
  22. 22.
    Yu. D. Tret’yakov, L. I. Martynenko, A. N. Grigor’ev, et al., Inorganic Chemistry. The Chemistry of Elements (Khimiya, Moscow, 2001), Part 1 [in Russian].Google Scholar
  23. 23.
    T. A. Yasnygina and S. V. Rasskazo., Geokhimiya, No. 8, 877 (2008).Google Scholar
  24. 24.
    J. Leitner, P. Chuchvalec, D. Sedmidubsky, et al., Thermochim. Acta 395, 27 (2003).CrossRefGoogle Scholar
  25. 25.
    Gordienko, S. P., Fenochka, B. V., and Viksman, G. Sh., The Thermodynamics of Lanthanide Compounds. Handbook (Naukova Dumka, Kiev, 1979) [in Russian].Google Scholar
  26. 26.
    Y. Yu, Y. Chen, H. Zhang, et al., Mater. Lett. 60, 1014 (2006).CrossRefGoogle Scholar
  27. 27.
    K. S. Gavrichev, M. A. Ryumin, V. M. Gurevich, and A. V. Tyuri., Neorg. Mater. 50, 993 (2014).CrossRefGoogle Scholar
  28. 28.
    N. N. Sirota, A. V. Novikov, V. V. Novikova, and V. V. Noviko., Zh. Fiz. Khim. 64, 1750 (1990).Google Scholar
  29. 29.
    L. R. Morss and R. J. M. Konings, Binary Rare Earth Oxides, Ed. by G. Adachi, N. Imanaka, and Z. C. Kang, (Kluwer, Netherlands, 2004), p. 163.Google Scholar
  30. 30.
    L. T. Denisov., Yu. F. Kargin, L. G. Chumilina, and V. M. Denisov, Neorg. Mater. 51, 542 (2015).Google Scholar
  31. 31.
    L. T. Denisova, L. G. Chumilina, N. V. Belousova, and V. M. Deniso., Zh. Fiz. Khim. 89, 1520 (2015).Google Scholar
  32. 32.
    L. T. Denisova, L. G. Chumilin., Yu. F. Kargin, et al., Dokl. Ross. Akad. Nauk 463, 435 (2015).Google Scholar
  33. 33.
    A. Masuda, O. Kawakami, Y. Dohmoto, et al., Geochem. J. 21, 119 (1987).CrossRefGoogle Scholar
  34. 34.
    R. D. Shanno., Acta Crystallogr., Sect. A 32, 751 (1976).CrossRefGoogle Scholar
  35. 35.
    I. Kawab., Geochem. J. 26, 309 (1992).CrossRefGoogle Scholar
  36. 36.
    D. F. Peppard, G. W. Mason, and S. A. Lewe., J. Inorg. Nucl. Chem. 31, 2271 (1967).CrossRefGoogle Scholar
  37. 37.
    B. F. Dzhurinski., Zh. Neorg. Khim. 25, 41 (1980).Google Scholar
  38. 38.
    R. H. Byrne and B. L. Geochim. Cosmochim. Acta 59, 4575 (1995).CrossRefGoogle Scholar
  39. 39.
    K. S. Gavrichev, M. A. Ryumin, G. E. Nikiforova, et al., Ros. Khim. Zhurn. (Zh. Ross. Khim. O–va im. D.I. Mendeleeva) 59 (1–2), 11 (2015).Google Scholar
  40. 40.
    K. S. Gavrichev, M. A. Ryumin, A. V. Tyurin, et al., Neorg. Mater. 47, 1231 (2011).CrossRefGoogle Scholar
  41. 41.
    M. Xu, H. Yu, H. Zhang, et al., J. Rare Earths 29, 207 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • L. T. Denisova
    • 1
    Email author
  • L. G. Chumilina
    • 1
  • Yu. F. Kargin
    • 2
  • N. V. Belousova
    • 1
  • V. M. Denisov
    • 1
  1. 1.Institute of Non-Ferrous Metals and Materials ScienceSiberian Federal UniversityKrasnoyarskRussia
  2. 2.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations