Advertisement

Russian Journal of Inorganic Chemistry

, Volume 61, Issue 9, pp 1135–1143 | Cite as

Specific features of the crystal and local structures of compounds formed in the Dy2O3–HfO2 system

  • V. V. Popov
  • A. P. Menushenkov
  • Ya. V. Zubavichus
  • A. A. Yaroslavtsev
  • D. S. Leshchev
  • E. S. Kulik
  • A. A. Yastrebtsev
  • A. A. Pisarev
  • S. A. Korovin
  • N. A. Tsarenko
Physical Methods of Investigation

Abstract

The crystal and local structures of compounds formed in the Dy2O3–HfO2 system (at molar ratios from 1: 3 to 3: 1) in the course of isothermal annealing of X-ray amorphous mixed hydroxides at temperatures up to 1600°C have been studied. At the molar ratio Dy2O3: HfO2 from 1: 3 to 1: 1, crystallization leads to formation of single-phase defect fluorite solid solutions nDy2O3mHfO2 with clearly pronounced nonequivalence of parameters of local environment of Dy3+ and Hf4+ cations. It has been found that Dy2H2O7 (Dy2O3: HfO2 = 1: 2) samples have a tendency to pyrochlore-type ordering in both the cationic and anionic sublattices.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Subramanian, G. Aravamudan, and G. V. Subba Rao, Prog. Solid State Chem. 15, 55 (1983).CrossRefGoogle Scholar
  2. 2.
    P. A. Arsen’ev, V. B. Glushkova, A. A. Evdokimov, et al., Rare Earth Compounds: Zirconates, Hafnates, Niobates, Tantalates, and Antimonates (Nauka, Moscow, 1985) [in Russian].Google Scholar
  3. 3.
    W. Pan, S. R. Phillpot, C. Wan, et al., MRS Bull. 32, 917 (2012).CrossRefGoogle Scholar
  4. 4.
    N. P. Simonenko, K. A. Sakharov, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 60, 1452 (2015).CrossRefGoogle Scholar
  5. 5.
    A. V. Shlyakhtina and L. G. Shcherbakova, Russ. J. Electrochem. 48, 1 (2012).CrossRefGoogle Scholar
  6. 6.
    D. Pakhare, D. Haynes, D. Shekhawat, et al., Appl. Petrochem. Res. 2, 27 (2012).CrossRefGoogle Scholar
  7. 7.
    V. D. Risovany, A. V. Zakharov, E. M. Muraleva, et al., J. Nucl. Mater. 355, 163 (2006).CrossRefGoogle Scholar
  8. 8.
    R. C. Ewing, W. J. Weber, and J. Lian, J. Appl. Phys. 95, 5949 (2004).CrossRefGoogle Scholar
  9. 9.
    J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod. Phys. 82, 53 (2010).CrossRefGoogle Scholar
  10. 10.
    V. V. Popov, A. P. Menushenkov, Ya. V. Zubavichus, et al., Russ. J. Inorg. Chem. 58, 1400 (2013).CrossRefGoogle Scholar
  11. 11.
    J. Emsley, The Elements (Oxford Univ., Oxford, 1998; Mir, Moscow, 1993).Google Scholar
  12. 12.
    E. R. Andrievskaya, J. Eur. Ceram. Soc. 28, 2363 (2008).CrossRefGoogle Scholar
  13. 13.
    C. R. Stanek and R. W. Grimes, J. Am. Ceram. Soc. 85, 2139 (2002).CrossRefGoogle Scholar
  14. 14.
    X. T. Zu, N. Li, and F. Gao, J. Appl. Phys. 104, 043517 (2008).CrossRefGoogle Scholar
  15. 15.
    B. P. Mandal, N. Garg, and S. M. Sarma, J. Solid State Chem. 179, 1990 (2006).CrossRefGoogle Scholar
  16. 16.
    V. V. Popov, Ya. V. Zubavichus, A. P. Menushenkov, et al., Russ. J. Inorg. Chem. 60, 16 (2015).CrossRefGoogle Scholar
  17. 17.
    A. P. Hammersley, S. O. Svensson, M. Hanfland, et al., High Press. Res. 14, 235 (1996).CrossRefGoogle Scholar
  18. 18.
    V. Petricek, M. Dusek, and L. Palatinus, Jana 2006, The Crystallographic Computing System, Inst. of Physics, Prague, 2006.Google Scholar
  19. 19.
    X. Qiu, J. W. Thompson, and S. J. L. Billinge, J. Appl. Crystallogr. 37, 678 (2004).CrossRefGoogle Scholar
  20. 20.
    C. L. Farrow, P. Juhos, J. W. Liu, et al., J. Phys.: Condens. Matter 19, 335219 (2007).Google Scholar
  21. 21.
    K. V. Klementev, J. Phys. D: Appl. Phys. 34, 209 (2001).CrossRefGoogle Scholar
  22. 22.
    M. Newville, J. Synchrotron Rad. 8, 322 (2001).CrossRefGoogle Scholar
  23. 23.
    J. J. Rehr, J. J. Kas, M. P. Prange, et al., Compt. Rend. Phys. 10, 548 (2009).CrossRefGoogle Scholar
  24. 24.
    V. V. Popov, A. P. Menushenkov, Ya. V. Zubavichus, et al., Russ. J. Inorg. Chem. 58, 331 (2013).CrossRefGoogle Scholar
  25. 25.
    E. Reynolds, P. E. R. Blanchard, J. Brendan, B. J. Kennedy, et al., Inorg. Chem. 52, 8409 (2013).CrossRefGoogle Scholar
  26. 26.
    V. V. Popov, Ya. V. Zubavichus, A. P. Menushenkov, et al., Russ. J. Inorg. Chem. 59, 279 (2014).CrossRefGoogle Scholar
  27. 27.
    F. N. Sayed, V. Grover, K. Bhattacharyya, et al., Inorg. Chem. 50, 2354 (2011).CrossRefGoogle Scholar
  28. 28.
    P. E. R. Blanchard, S. Liu, D. J. Kennedy, et al., J. Phys. Chem. 117, 2266 (2013).Google Scholar
  29. 29.
    L. Minervini, R. W. Grimes, and K. E. Sickafus, J. Am. Ceram. Soc. 83, 1873 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. V. Popov
    • 1
    • 2
  • A. P. Menushenkov
    • 1
  • Ya. V. Zubavichus
    • 2
  • A. A. Yaroslavtsev
    • 1
  • D. S. Leshchev
    • 3
  • E. S. Kulik
    • 2
  • A. A. Yastrebtsev
    • 1
  • A. A. Pisarev
    • 1
  • S. A. Korovin
    • 1
  • N. A. Tsarenko
    • 4
  1. 1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  2. 2.National Research Center Kurchatov InstituteMoscowRussia
  3. 3.European Synchrotron Radiation FacilityGrenobleFrance
  4. 4.JSC Scientific Research Institute of Chemical TechnologyMoscowRussia

Personalised recommendations