Skip to main content

Substituent effect on the structure and properties of dialumene

Abstract

In this work, we report a theoretical study on molecular structure, and electronic properties of dialumene (ArAl = AlAr, Ar = aryl) and substituted dialumene. The effects of the substituent groups on the structure, electronic properties, ionization potential (IP), electron affinity (EA), and reorganization energy were studied. Theoretical calculations were carried out by density functional theory (DFT) using the B3LYP hybrid function combined with the 6-311 + G(d) basis set. The most intensity electronic transition energy and oscillator strength of molecules were calculated by time-dependent density functional theory (TD-DFT) and shows λmax blue-shifted in withdrawing electron substituents. Quantum theory of atom in molecules was used for explain of AlAl and AlC bonds in all molecules.

This is a preview of subscription content, access via your institution.

References

  1. M. Driess and H. Grutzmacher, Chem. Int. Ed. Engl. 35 828 (1996).

    CAS  Article  Google Scholar 

  2. R. C. Fischer ad P. P. Power, Chem. Rev. 110, 3877 (2010).

    Article  Google Scholar 

  3. S.-Y. Gu, J.-H. Sheu, and M.-D. Su, Inorg. Chem. 46, 2028 (2007).

    CAS  Article  Google Scholar 

  4. Y. Mizuhata, T. Sasamori, and N. Tokitoh, Chem. Rev. 110, 3850 (2010).

    CAS  Article  Google Scholar 

  5. P. P. Power, J. Chem. Soc., Dalton Trans., 2939 (1998).

  6. P. P. Power, Chem. Rev. 99, 3463 (1999).

    CAS  Article  Google Scholar 

  7. E. Rivard and P. P. Power, Inorg. Chem. 46, 10047 (2007).

    CAS  Article  Google Scholar 

  8. T. Sasamori and N. Tokitoh, Dalton Trans., 1395 (2008).

  9. Y. Wang and G. H. Robinson, Inorg. Chem. 50, 12326 (2011).

    CAS  Article  Google Scholar 

  10. Y. Wang and G. H. Robinson, Organomet. 26, 2 (2007).

    CAS  Article  Google Scholar 

  11. Y. Wang and G H. Robinson, Chem. Commun., 5201 (2009).

  12. C. A. Caputo, J.-D. Guo, S. Nagase, et al., J. Am. Chem. Soc. 134, 7155 (2012).

    CAS  Article  Google Scholar 

  13. C. A. Caputo, J. Koivistoinen, J. Moilanen, et al., J. Am. Chem. Soc. 135, 1952 (2013).

    CAS  Article  Google Scholar 

  14. Z. Zhu, R. C. Fischer, B. D. Ellis, et al., Chem. Eur. J. 15, 5263 (2009).

    CAS  Article  Google Scholar 

  15. R. J. Wright, A. D. Phillips, A. D. Hardmann, and P. P. Power, J. Am. Chem. Soc. 124, 8538 (2002).

    CAS  Article  Google Scholar 

  16. R. J. Wright, A. D. Phillips, S. Hino, and P. P. Power, J. Am. Chem. Soc.127, 4794 (2005).

    CAS  Article  Google Scholar 

  17. R. J. Wright, M. Brynda, and P. P. Power, Angew. Chem. Int. Ed. 45, 5950 (2006).

    Article  Google Scholar 

  18. R. J. Wehmschulte, K. Ruhlandt-Senge, M. M. Olmstead, et al., Inorg. Chem. 32, 2983 (1993).

    CAS  Article  Google Scholar 

  19. C. Pluta, K.-R. Porschke, C. Kruger, and K. Hildenbrand, Angew. Chem. Int. Ed. Engl. 32, 388 (1993).

    Article  Google Scholar 

  20. N. Wiberg, T. Blank, W. Kaim, et al., Eur. J. Inorg. Chem., 1475 (2000).

  21. B. K. Rao and P. Jena, Phys. Rev. Lett. 86, 692 (2001).

    CAS  Article  Google Scholar 

  22. H.-J. Himmel, L. Manceron, A. J. Downs, and L. Manceron, Polyedron 21, 473 (2002).

    Article  Google Scholar 

  23. H.-J. Himmel, L. Manceron, A. J. Downs, and P. Pullumbi, J. Am. Chem. Soc. 124, 4448 (2002).

    CAS  Article  Google Scholar 

  24. H. J. Himmel, L. Manceron, A. J. Downs, and P. Pullumbi, Angew. Chem., Int. Ed. Eng. 41, 976 (2002).

    Google Scholar 

  25. N. Takagi, M. W. Schmidt, and S. Nagase, Organomet. 20, 1646 (2001).

    CAS  Article  Google Scholar 

  26. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian, 2003.

    Google Scholar 

  27. R. C. Binning. and L. A. Curtiss, J. Comp. Chem. 11, 1206 (1990).

    CAS  Article  Google Scholar 

  28. L. A. Curtiss, M. P. McGrath, J.-P. Blaudeau, et al., J. Chem. Phys. 103, 6104 (1995).

    CAS  Article  Google Scholar 

  29. M. P. McGrath and L. Radom, J. Chem. Phys. 94, 51 (1991).

    Article  Google Scholar 

  30. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    CAS  Article  Google Scholar 

  31. E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).

    CAS  Article  Google Scholar 

  32. R. F. W. Bader, in, Hamilton, McMaster Univ., 2000.

    Google Scholar 

  33. A. Curioni, M. Boero, and W. Andreoni, Chem. Phys. Lett. 294, 263 (1998).

    CAS  Article  Google Scholar 

  34. I. Wang, E. Botzung-Appert, O. Stéphan, et al., J. Opt. Pure A: Appl. Opt. 4, S258 (2002).

    CAS  Article  Google Scholar 

  35. L. Sobczyk, S. J. Grabowski, and T. M. Krygowski, Chem. Rev. 105, 3513 (2005).

    CAS  Article  Google Scholar 

  36. R. F. W. Bader, C. F. Matta, and F. Cortés-Guzman, Organomet. 23, 6253 (2004).

    CAS  Article  Google Scholar 

  37. X. Fradera, M. A. Austen, and R. F. W. Bader, J. Phys. Chem. A 103, 304 (1999).

    CAS  Article  Google Scholar 

  38. R. F. W. Bader and D.-F. Fang, J. Chem. Theor. Comput. 1, 403 (2005).

    CAS  Article  Google Scholar 

  39. P. M. Mitrasinovic, Can. J. Chem. 81, 542 (2003).

    CAS  Article  Google Scholar 

  40. A. M. Pendas, M. A. Blanco, E. Francisco, Chem. Phys. Lett. 16, 417 (2006).

    Google Scholar 

  41. J. Poater, M. Solà, and F. M. Bickelhaupt, Chem. Eur. J. 12, 2902 (2006).

    CAS  Article  Google Scholar 

  42. A. Kovacs, C. Esterhuysen, and G. Frenking, Chem. Eur. J. 11, 1813 (2005).

    CAS  Article  Google Scholar 

  43. S. E. O’Brien and P. L. A. Popelier, Can. J. Chem. 77, 28 (1999).

    Article  Google Scholar 

  44. S. T. Howard, T. M. Krygowski, Can. J. Chem., 75 (1997) 1174.

    CAS  Article  Google Scholar 

  45. R. W. F. Bader and C. F. Matta, Organomet. 23, 6253 (2004).

    CAS  Article  Google Scholar 

  46. V. S. Melchor, I. Alkorta, J. Elguero, et al., Organomet. 25, 5638 (2006).

    Article  Google Scholar 

  47. L. Gonzalez, O. Mo, M. Yanez, and J. Elguero, J. Mol. Struct. 371, 1 (1996).

    CAS  Article  Google Scholar 

  48. R. F. W. Bader, Atoms in Molecules: A Quantum Theory (ClarendonPress, Oxford, 1994).

  49. M. Palusiak, J. Organomet. Chem. 692, 3866 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ghiasi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghiasi, R., Heidarbeigi, A. Substituent effect on the structure and properties of dialumene. Russ. J. Inorg. Chem. 61, 985–992 (2016). https://doi.org/10.1134/S0036023616080088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023616080088