Russian Journal of Inorganic Chemistry

, Volume 61, Issue 2, pp 225–231 | Cite as

Effect of the synthesis conditions on the crystal, local, and electronic structure of Ce 1-x 3+ Ce x 4+ AlO3 + x/2

  • V. V. PopovEmail author
  • A. P. Menushenkov
  • Ya. V. Zubavichus
  • A. S. Sharapov
  • V. A. Kabanova
  • A. A. Yastrebtsev
  • L. A. Arzhatkina
  • N. A. Tsarenko
  • A. M. Strel’nikova
  • V. V. Kurilkin
Physical Methods of Investigation


Cerium monoaluminate Ce 1-x 3+ Ce x 4+ AlO3+x/2 powders with low contents of Ce4+ cations (х ~ 0.052) were synthesized. A set of modern local structure sensitive methods of analysis, including X-ray absorption spectroscopy and Raman spectroscopy, were used to study the crystal, local, and electronic structures of the synthesized compounds. The degree of reduction and the thermal stability to oxidation of reduced powders depend not only on the reduction conditions but also on the conditions of heat pretreatment of the initial samples. It was concluded that the reaction 4CeAlO3 + O2 ↔ 4CeO2 + 2Al2O3 is reversible.


Solid Oxide Fuel Cell Cerium Oxide Isothermal Annealing XANES Spectrum Cerium Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Leonov, High-Temperature Chemistry of Cerium Oxide Compounds (Nauka, Leningrad, 1969) [in Russian].Google Scholar
  2. 2.
    B. A. Arsen’ev, L. S. Kovba, and Kh. S. Bagdasarov, The Chemistry of Rare Elements (Nauka, Moscow, 1983) [in Russian].Google Scholar
  3. 3.
    Q. Yuan, H.-H. Hao-Hong Duan, L.-L. Li, et al., J. Coll. Inter. Sci, 335, 151 (2009).CrossRefGoogle Scholar
  4. 4.
    V. K. Ivanov, A. B. Shcherbakov, A. E. Baranchikov, et al., Nanocrystalline Ceria: Properties, Synthesis, Application (Izd. Tomsk. Univ., Tomsk, 2013) [in Russian].Google Scholar
  5. 5.
    V. K. Ivanov, G. P. Kopitsa, A. E. Baranchikov, et al., Russ. J. Inorg. Chem. 54, 1857 (2009).CrossRefGoogle Scholar
  6. 6.
    V. K. Ivanov, A. E. Baranchikov, O. S. Polezhaeva, et al., Russ. J. Inorg. Chem. 55, 325 (2010).CrossRefGoogle Scholar
  7. 7.
    O. V. Safonova, A. A. Guda, C. Paun, et al., J. Phys. Chem. 118, 1974.Google Scholar
  8. 8.
    E. M. Moroz, Russ. Chem. Rev. 80, 293 (2011).CrossRefGoogle Scholar
  9. 9.
    J. Kašpar, M. Graziani, and P. Fornasiero, Handbook on the Physics and Chemistry of Rare Earths: The Role of Rare Earths in Catalysis, Ed. by K. A. Gschneidner, and L. Eyring (Elsevier Science, Amsterdam, 2000), Vol. 29, p. 159.CrossRefGoogle Scholar
  10. 10.
    S. A. Venâncio and P. E. V. de Miranda, Ceram. Int. 37, 3139 (2011).CrossRefGoogle Scholar
  11. 11.
    A. I. Mikhailichenko, E. B. Mikhlin, and Yu. B. Patrikeev, Rare-Earth Metals (Metallurgiya, Moscow, 1987) [in Russian].Google Scholar
  12. 12.
    P. Maestro and D. Huguenin, J. Alloys Compd. 225, 520 (1995).CrossRefGoogle Scholar
  13. 13.
    A. Feteira, D. C. Sinclair, and M. T. Lanagan, J. Appl. Phys. 101, 064110 (2007).CrossRefGoogle Scholar
  14. 14.
    T. Shishido, S. Okada, Kudou K. Kunio, et al., Pacific Sci. Rev. 10, 45 (2008).Google Scholar
  15. 15.
    L. Vasylechko, A. Senyshyn, D. Trots, et al., J. Solid State Chem. 180, 1277 (2007).CrossRefGoogle Scholar
  16. 16.
    G. R. Rao and B. G. Mishra, Bull. Catal. Soc. Ind. 2, 122 (2003).Google Scholar
  17. 17.
    P. A. Deshpande, S. T. Aruna, and G. Madras, Catal. Sci. Technol. 1, 1683 (2011).CrossRefGoogle Scholar
  18. 18.
    P. A. Deshpande, S. T. Aruna, and G. Madras, Clean Soil, Air, Water 39, 259 (2011).CrossRefGoogle Scholar
  19. 19.
    V. V. Popov, Ya. V. Zubavichus, A. P. Menushenkov, et al., Russ. J. Inorg. Chem. 60, 16 (2015).CrossRefGoogle Scholar
  20. 20.
    A. P. Hammersley, S. O. Svensson, M. Hanfland, et al., High Press. Res. 14, 235 (1996).CrossRefGoogle Scholar
  21. 21.
    V. Petricek, M. Dusek, and L. Palatinus, Jana 2006, The Crystallographic Computing System, Praha, Czech. Republic, Institute of Physics, 2006.Google Scholar
  22. 22.
    K. V. Klementiev, Scholar
  23. 23.
    B. M. Reddy, A. Khan, P. Lakshmanan, et al., J. Phys. Chem. B 109, 3355 (1979).CrossRefGoogle Scholar
  24. 24.
    G. Gouadec and Ph. Colomban, Prog. Cryst. Growth Charact. Mater. 53, 1 (2007).CrossRefGoogle Scholar
  25. 25.
    I. R. Lewis and H. G. V. Edwards, Handbook of Raman Spectroscopy (Marcel Dekker, New York, 2001).Google Scholar
  26. 26.
    A. V. Soldatov, T. S. Ivanchenko, S. Della Longa, et al., Phys. Rev. B 50, 5074 (1994).CrossRefGoogle Scholar
  27. 27.
    V. Fernandes, I. L. Graff, J. Varalda, et al., J. Electrochem. Soc. 159, 27 (2012).CrossRefGoogle Scholar
  28. 28.
    D. I. Khomskii, Usp. Fiz. Nauk 129, 443 (1979).CrossRefGoogle Scholar
  29. 29.
    P. E. R. Blanchard, S. Liu, D. J. Kennedy, et al., J. Phys. Chem. 117, 2266 (1979).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. V. Popov
    • 1
    Email author
  • A. P. Menushenkov
    • 1
  • Ya. V. Zubavichus
    • 2
  • A. S. Sharapov
    • 1
  • V. A. Kabanova
    • 1
  • A. A. Yastrebtsev
    • 1
  • L. A. Arzhatkina
    • 3
  • N. A. Tsarenko
    • 3
  • A. M. Strel’nikova
    • 3
  • V. V. Kurilkin
    • 4
  1. 1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  2. 2.National Research Center Kurchatov InstituteMoscowRussia
  3. 3.JSC All-Russian Research Institute of Chemical TechnologyMoscowRussia
  4. 4.Peoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations