Russian Journal of Inorganic Chemistry

, Volume 60, Issue 5, pp 602–609 | Cite as

Studying processes of crystallization and cation ordering in Eu2Hf2O7

  • V. V. Popov
  • A. P. Menushenkov
  • Ya. V. Zubavichus
  • A. A. Yaroslavtsev
  • A. A. Veligzhanin
  • N. A. Kolyshkin
  • E. S. Kulik
Physical Methods of Investigation


Methods of local X-ray anomalous diffraction and X-ray absorption spectroscopy based on the interaction of synchrotron radiation with condensed matter have been used to study the processes of formation and evolution of the crystal structure in Eu2Hf2O7 powders. It has been shown that the isothermal annealing of the X-ray amorphous mixed hydroxide leads initially to the formation of nanocrystalline powders, which have a defect fluorite structure with a clearly pronounced nonequivalence of the local environment of the Eu3+ and Hf4+ cations. An increase in the temperature of heat treatment to ≥1200°C leads to the nucleation and growth of nanodomains with a superstructural cation ordering of the pyrochlore type inside the coarse crystallites of the defect fluorite and, finally, at T ≥ 1500°C, to the complete phase transition of the fluorite-pyrochlore type in the Eu2Hf2O7 system. In the pyrochlore Eu2Hf2O7 structure, there was for the first time revealed a simultaneous broadening of the shape of the L 3 absorption edges of both hafnium and europium, which indicates a partial change in the symmetry of the nearest oxygen environment of both cations.


Hafnium Isothermal Annealing Fluorite Structure Simultaneous Thermal Analysis Superlattice Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Subramanian, G. Aravamudan, and G. V. Subba Rao, Prog. Solid State Chem. 15(2), 55 (1983).CrossRefGoogle Scholar
  2. 2.
    K. I. Portnoi and N. I. Timofeeva, Oxygen Compounds of Rare-Earth Elements (Metallurgiya, Moscow, 1986) [in Russian].Google Scholar
  3. 3.
    Arsen’ev, P.A., Glushkova, V.B., A. A. Evdokimov, et al., Rare-Earth Compounds: Zirconates, Hafnates, Niobates, Tantalates, and Antimonates (Nauka, Moscow, 1985) [in Russian].Google Scholar
  4. 4.
    E. R. Andrievskaya, J. Eur. Ceram. Soc. 28, 2363 (2008).CrossRefGoogle Scholar
  5. 5.
    A. R. Cleave, Ph. D. Dissertation (Imperial College, London, 2006).Google Scholar
  6. 6.
    M. J. D. Rushton, R. W. Grimes, C. R. Stanek, et al., J. Mater. Res. 19, 1603 (2004).CrossRefGoogle Scholar
  7. 7.
    V. V. Popov, A. P. Menushenkov, Ya. V. Zubavichus, et al., Russ. J. Inorg. Chem. 58, 1400 (2013).CrossRefGoogle Scholar
  8. 8.
    M. R. Winter and D. R. Clarke, J. Am. Ceram. Soc. 90, 533 (2007).CrossRefGoogle Scholar
  9. 9.
    C. V. Ramana, J. J. Gengler, and J. G. Jones, J. Phys. Chem. 116, 25178 (2012).Google Scholar
  10. 10.
    A. V. Shlyakhtina and L. G. Shcherbakova, Russ. J. Electrochem. 48, 1 (2012).CrossRefGoogle Scholar
  11. 11.
    V. D. Risovany, A. V. Zakharov, E. M. Muraleva, et al., J. Nucl. Mater. 355, 163 (2006).CrossRefGoogle Scholar
  12. 12.
    R. C. Ewing, W. J. Weber, and J. Lian, J. Appl. Phys. 95, 5949 (2004).CrossRefGoogle Scholar
  13. 13.
    R. A. Hansel, S. K. Desai, S. W. Allison, et al., J. Appl. Phys. 107, 016101 (2010).CrossRefGoogle Scholar
  14. 14.
    V. V. Popov, V. F. Petrunin, S. A. Korovin, et al., Yadern. Fiz. Inzhinir. 4, 571 (2013).Google Scholar
  15. 15.
    P. E. R. Blanchard, S. Liu, D. J. Kennedy, et al., J. Phys. Chem. 117, 2266 (2013).Google Scholar
  16. 16.
    V. V. Popov, Ya. V. Zubavichus, A. P. Menushenkov, et al., Russ. J. Inorg. Chem. 60, 16 (2015).CrossRefGoogle Scholar
  17. 17.
    A. V. Shlyakhtina, M. V. Boguslavskii, S. Yu. Stefanovich, et al., Inorg. Mater. 42, 519 (2006).CrossRefGoogle Scholar
  18. 18.
    M. P. Saradhi, S. V. Ushakov, and A. Navrotsky, RSC Adv. 2, 3328 (2012).CrossRefGoogle Scholar
  19. 19.
    M. J. Maloney, US Pat. 2003/0049470 A1, Int. Cl B32B 9/00 (2003).Google Scholar
  20. 20.
    R. Subramanian and D. B. Allen, US Pat. 2003/0211354 A1, Int. Cl. B32B 15/04 (2003).Google Scholar
  21. 21.
    S. K. Desai, R. A. Hansel, R. V. Pitz, et al., Proc. 48th AIAA Aerospace Science Meeting, 2010, Orlando, Fla. (AIAA, Orlando, 2010), p. 1.Google Scholar
  22. 22.
    A. P. Hammersley, S. O. Svensson, M. Hanfland, et al., High Press. Res. 14, 235 (1996).CrossRefGoogle Scholar
  23. 23.
    V. Petricek, M. Dusek, and L. Palatinus, Jana 2006, The Crystallographic Computing System (Inst. Phys., Praha, 2006).Google Scholar
  24. 24.
    K. V. Klementev, J. Phys. D: Appl. Phys. 34, 209 (2001).CrossRefGoogle Scholar
  25. 25.
    M. Newville, J. Synchrotron Rad. 8, 322 (2001).CrossRefGoogle Scholar
  26. 26.
    A. L. Ankudinov, C. Bouldin, J. J. Rehr, et al., Phys. Rev. B 58, 7565 (1998).CrossRefGoogle Scholar
  27. 27.
    S. Hayun, T. B. Tran, J. Lian, et al., Acta Mater. 60, 4303 (2012).CrossRefGoogle Scholar
  28. 28.
    Y. Waseda, Anomalous X-ray Scattering for Materials Characterization. Atomic-Scale Structure Determination (Springer, Berlin, 2002).Google Scholar
  29. 29.
    Ya. V. Zubavichus and Yu. L. Slovochotov, Russ. Chem. Rev. 70, 373 (2001).CrossRefGoogle Scholar
  30. 30.
    V. V. Popov, A. P. Menushenkov, Ya. V. Zubavichus, et al., Russ. J. Inorg. Chem. 59, 279 (2014).CrossRefGoogle Scholar
  31. 31.
    P. E. R. Blanchard, R. Clements, D. J. Kennedy, et al., Inorg. Chem. 51, 13237 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. V. Popov
    • 1
  • A. P. Menushenkov
    • 1
  • Ya. V. Zubavichus
    • 2
  • A. A. Yaroslavtsev
    • 1
  • A. A. Veligzhanin
    • 2
  • N. A. Kolyshkin
    • 2
  • E. S. Kulik
    • 2
  1. 1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  2. 2.National Research Center Kurchatov InstituteMoscowRussia

Personalised recommendations