Russian Journal of Inorganic Chemistry

, Volume 60, Issue 1, pp 1–8 | Cite as

Effects caused by glutamic acid and hydrogen peroxide on the morphology of hydroxyapatite, calcium hydrogen phosphate, and calcium pyrophosphate

  • L. S. SkogarevaEmail author
  • V. K. Ivanov
  • A. E. Baranchikov
  • N. A. Minaeva
  • T. A. Tripol’skaya
Synthesis and Properties of Inorganic Compounds


Reacting hydroxyapatite with H2O2 vapor at 10°C and brushite CaHPO4 · 2H2O with 90% H2O2 solution at 0°C (the hydroxyapatite and brushite were both prepared in the presence of glutamic acid) yielded the relevant peroxo solvates containing up to 18% hydrogen peroxide. The peroxo compounds and their degradation products obtained at 170–960°C were morphologically studied (using SEM). The factors influencing particle sizes are considered.


Glutamic Acid Hydroxyapatite Diammonium Phosphate Calcium Pyrophosphate Monetite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. V. Rodicheva, V. P. Orlovskii, V. I. Privalov, et al., Russ. J. Inorg. Chem. 46, 1631 (2001).Google Scholar
  2. 2.
    S. M. Barinov, Ross. Khim. Zh. (Zh. Ross. Khim. O-va im. D.I. Mendeleeva) 53(2), 123 (2009).Google Scholar
  3. 3.
    S. M. Barinov, Usp. Khim. 79, 15 (2010).CrossRefGoogle Scholar
  4. 4.
    N. Roveri, G. Falini, M. C. Sidoti, et al., Mater. Sci. Eng., 441 (2003).Google Scholar
  5. 5.
    M. Kikuchi, S. Itoh, S. Ichinose, et al., Biomaterials 22, 1705 (2001).CrossRefGoogle Scholar
  6. 6.
    L. S. Skogareva, V. K. Ivanov, O. S. Ivanova, et al., Neorg. Mater. 49, 871 (2013).CrossRefGoogle Scholar
  7. 7.
    T. V. Safronova, V. I. Putlyaev, M. A. Shekhirev, et al., Steklo Keram., No. 3, 31 (2007).Google Scholar
  8. 8.
    E. S. Kovaleva, M. P. Shabanov, V. I. Putlyaev, et al., Materialwis. Werkstoff. 39, 822 (2008).CrossRefGoogle Scholar
  9. 9.
    E. S. Kovaleva, M. P. Shabanov, V. I. Putlyaev, et al., Centr. Eur. J. Chem. 7, 168 (2009).CrossRefGoogle Scholar
  10. 10.
    T. V. Safronova and V. I. Putlyaev, Nanosistemy: Fiz., Khim., Mat. 4, 24 (2013).Google Scholar
  11. 11.
    H. Zhao, W. He, Y. Wang, et al., Mat. Chem. Phys. 111, 265 (2008).CrossRefGoogle Scholar
  12. 12.
    V. Vincent, G. Nihoul, and J. R. Gavarri, Solid State Ion. 92, 11 (1996).CrossRefGoogle Scholar
  13. 13.
    F. -H. Lin, C.-J. Liao, K. S. Chen, et al., Biomaterials 18, 915 (1997).CrossRefGoogle Scholar
  14. 14.
    F. H. Lin, J. R. Liaw, M. H. Hon, et al., Mater. Chem. Phys. 41, 110 (1995).CrossRefGoogle Scholar
  15. 15.
    T. Kasuga, M. Nogami, and M. Niinomi, J. Mater. Sci. Lett. 20, 1249 (2001).CrossRefGoogle Scholar
  16. 16.
    T. Kasuga, Acta Biomater. 1, 55 (2005).CrossRefGoogle Scholar
  17. 17.
    L. S. Skogareva, G. P. Pilipenko, I. V. Shabalova, et al., Russ. J. Inorg. Chem. 56, 673 (2011).CrossRefGoogle Scholar
  18. 18.
    G. Charlot, Les Methodes de la Chimie Analytique: Analyse Quantitative Minerale (Masson, Paris, 1961), Vol. 2.Google Scholar
  19. 19.
    W. C. Schumb, Ch. N. Satterfield, and R. L. Wentworth, Hydrogen Peroxide (Reinhold, New York, 1955; Inostrannaya Literatura, Moscow, 1958).Google Scholar
  20. 20.
    Hydrogen Peroxide and Peroxide Compounds, Ed. by M. E. Pozin (Goskhimizdat, Moscow, 1951) [in Russian].Google Scholar
  21. 21.
    C. Jager, T. Welzel, W. Meyer-Zaika, et al., Magn. Reson. Chem. 44, 573 (2006).CrossRefGoogle Scholar
  22. 22.
    H. Yu, H. Zhang, X. Wang, et al., J. Phys. Chem. Solids 68, 1863 (2007).CrossRefGoogle Scholar
  23. 23.
    D. Tadic, F. Peters, and M. Epple, Biomaterials 23, 2553 (2002).CrossRefGoogle Scholar
  24. 24.
    H. Zhao, X. Li, J. Wang, et al., J. Biomed. Mater. Res. 52, 157 (2000).CrossRefGoogle Scholar
  25. 25.
    K. C. Blakeslee and R. A. Condrate, J. Am. Ceram. Soc. 54, 559 (1971).CrossRefGoogle Scholar
  26. 26.
    B. O. Fowler, Inorg. Chem. 13, 194 (1974).CrossRefGoogle Scholar
  27. 27.
    N. A. Chumaevskii, V. P. Orlovskii, Zh. A. Ezhova, et al., Zh. Neorg. Khim. 37, 1455 (1992).Google Scholar
  28. 28.
    P. F. Gonzalez-Diaz and M. Santos, J. Solid State Chem. 22, 193 (1977).CrossRefGoogle Scholar
  29. 29.
    G. Engel and W. E. Klee, J. Solid State Chem. 5, 28 (1972).CrossRefGoogle Scholar
  30. 30.
    T. Kanazava, Inorganic Phosphate Materials (Naukova Dumka, Kiev, 1998) [in Russian].Google Scholar
  31. 31.
    J.-J Bian, D.-W. Kim, and K.S. Hong, J. Eur. Ceram. Soc. 23, 2589 (2003).CrossRefGoogle Scholar
  32. 32.
    B. O. Fowler, E. C. Moreno, and W. E. Brown, Arch. Oral. Biol. 11, 477 (1996).CrossRefGoogle Scholar
  33. 33.
    F.-H. Lin, C.-J. Liao, and K.-S. Chen, Biomaterials 19, 1101 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • L. S. Skogareva
    • 1
    Email author
  • V. K. Ivanov
    • 1
    • 2
  • A. E. Baranchikov
    • 1
  • N. A. Minaeva
    • 1
  • T. A. Tripol’skaya
    • 1
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.National Research Tomsk State UniversityTomskRussia

Personalised recommendations