Russian Journal of Inorganic Chemistry

, Volume 60, Issue 1, pp 16–22 | Cite as

Lanthanide effect on the formation and evolution of nanocrystalline structures in Ln2Hf2O7 compounds (Ln = Sm-Dy)

  • V. V. PopovEmail author
  • Ya. V. Zubavichus
  • A. P. Menushenkov
  • A. A. Yaroslavtsev
  • E. S. Kulik
  • A. A. Pisarev
  • N. A. Kolyshkin
Synthesis and Properties of Inorganic Compounds


X-ray diffraction with synchrotron radiation has been used for comparative analysis of crystal structure evolution in Ln2Hf2O7 (Ln = Sm-Dy) complex oxides with a fluorite-pyrochlore structure, synthesized by isothermal annealing of mixed hydroxides. It has been shown that heat treatment of the precursor in the temperature range 600–700°C initiates the formation of nanocrystallites with a fluorite structure. Long-range cationic ordering of the pyrochlore type appears in Ln2Hf2O7 (Ln = Sm-Tb) samples once a definite crystal size has been achieved at temperatures ≥1200°C. In Dy2Hf2O7 samples, a defect fluorite structure persists in the entire range of heat-treatment temperatures.


Isothermal Annealing Pyrochlore Phase Simultaneous Thermal Analysis Pyrochlore Structure Superstructure Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Subramanian, G. Aravamudan, and G. V. Subba Rao, Prog. Solid State Chem. 15, 55 (1983).CrossRefGoogle Scholar
  2. 2.
    X. Q. Cao, R. Vassen, and D. Stoever, J. Eur. Ceram. Soc. 24, 1 (2004).CrossRefGoogle Scholar
  3. 3.
    W. Pan, S. R. Phillpot, C. Wan, et al., MRS Bull. 32, 917 (2012).CrossRefGoogle Scholar
  4. 4.
    H. Yamamura, H. Nishinoa, K. Kakinuma, et al., Solid State Ionics 158, 359 (2003).CrossRefGoogle Scholar
  5. 5.
    A. V. Shlyakhtina and L. G. Shcherbakova, Russ. J. Electrochem. 48, 1 (2012).CrossRefGoogle Scholar
  6. 6.
    V. D. Risovany, E. E. Varlashova, and D. N. Suslov, J. Nucl. Mater. 281, 84 (2000).CrossRefGoogle Scholar
  7. 7.
    V. D. Risovany, A. V. Zakharov, E. M. Muraleva, et al., J. Nucl. Mater. 355, 163 (2006).CrossRefGoogle Scholar
  8. 8.
    R. C. Ewing, W. J. Weber, and J. Lian, J. Appl. Phys. 95, 5949 (2004).CrossRefGoogle Scholar
  9. 9.
    N. P. Laverov, S. V. Yudintsev, T. S. Livshits, et al., Geochem. Int. 48, 1 (2010).CrossRefGoogle Scholar
  10. 10.
    C. Karthik, T. J. Anderson, D. Gout, et al., J. Solid State Chem. 194, 168 (2012).CrossRefGoogle Scholar
  11. 11.
    P. E. R. Blanchard, S. Liu, D. J. Kennedy, et al., J. Phys. Chem. C 117, 2266 (2013).CrossRefGoogle Scholar
  12. 12.
    J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod. Phys. 82, 53 (2010).CrossRefGoogle Scholar
  13. 13.
    A. R. Cleave, Ph. D. Thesis (Imperial College, London, 2006).Google Scholar
  14. 14.
    S. V. Ushakov, A. Navrotsky, J. A. Tangeman, et al., J. Am. Ceram. Soc. 90, 1171 (2007).CrossRefGoogle Scholar
  15. 15.
    C. R. Stanek, Ph. D. Thesis (Imperial College, London, 2003).Google Scholar
  16. 16.
    X. T. Zu, N. Li, and F. Gao, J. Appl. Phys. 104, 043517 (2008).CrossRefGoogle Scholar
  17. 17.
    B. P. Mandal, N. Garg, and S. M. Sarma, J. Solid State Chem. 179, 1990 (2006).CrossRefGoogle Scholar
  18. 18.
    V. V. Popov, V. F. Petrunin, S. A. Korovin, et al., Russ. J. Inorg. Chem. 56, 1538 (2011).CrossRefGoogle Scholar
  19. 19.
    V. V. Popov, Ya. V. Zubavichus, V. F. Petrunin, et al., Glass Phys. Chem. 37, 512 (2011).CrossRefGoogle Scholar
  20. 20.
    V. V. Popov, A. P. Menushenkov, Ya. V. Zubavichus, et al., Russ. J. Inorg. Chem. 58, 331 (2013).CrossRefGoogle Scholar
  21. 21.
    V. V. Popov, A. P. Menushenkov, Ya. V. Zubavichus, et al., Russ. J. Inorg. Chem. 58, 1400 (2013).CrossRefGoogle Scholar
  22. 22.
    V. V. Popov, Ya. V. Zubavichus, A. P. Menushenkov, et al., Russ. J. Inorg. Chem. 59, 279 (2014).CrossRefGoogle Scholar
  23. 23.
    A. P. Hammersley, S. O. Svensson, M. Hanfland, et al., High Press. Res. 14, 235 (1996).CrossRefGoogle Scholar
  24. 24.
    V. Petricek, M. Dusek, and L. Palatinus, Jana 2006, The Crystallographic Computing System, Inst. Of Physics, Praha, Czech. Republic, 2006.Google Scholar
  25. 25.
    Y. H. Lee, H. S. Sheu, J. P. Deng, et al., J. Alloys Comp. 487, 595 (2009).CrossRefGoogle Scholar
  26. 26.
    G. C. Lau, T. M. McQueen, Q. Huang, et al., J. Solid State Chem. 181, 45 (2008).CrossRefGoogle Scholar
  27. 27.
    V. S. Gorshkov, V. G. Savel’ev, and N. F. Fedorov, Physical Chemistry of Silicates and Other High-Melting Compounds (Vysshaya shkola, Moscow, 1988) [in Russian].Google Scholar
  28. 28.
    Y. Waseda, Anomalous X-ray Scattering for Materials Characterization. Atomic-Scale Structure Determination (Springer, Berlin, 2002).Google Scholar
  29. 29.
    Ya. V. Zubavichus and Yu. L. Slovochotov, Russ. Chem. Rev. 70, 373 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. V. Popov
    • 1
    Email author
  • Ya. V. Zubavichus
    • 2
  • A. P. Menushenkov
    • 1
  • A. A. Yaroslavtsev
    • 1
  • E. S. Kulik
    • 2
  • A. A. Pisarev
    • 1
  • N. A. Kolyshkin
    • 2
  1. 1.National Research Nuclear University MEPhIMoscowRussia
  2. 2.National Research Center Kurchatov InstituteMoscowRussia

Personalised recommendations