Skip to main content
Log in

Silicate-substituted carbonated hydroxyapatite powders prepared by precipitation from aqueous solutions

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The powders of silicate-substituted carbonated hydroxyapatites were prepared by a precipitation method from aqueous alkaline solutions with a varied sodium silicate content. With the use of physicochemical techniques, it was established that the solid phase included to 7.36 wt % silicate ions and to 7.34 wt % carbonate ions under the test conditions. The nature of processes occurring on the thermal treatment of the samples depends on the Ca/P and Ca/(P + Si) molar ratios and the concentration of SiO4 groups. A study of the behavior of solid phases on contact with a solution of NaCl (0.9 mol %) showed that the rates of dissolution of all of the silicon-containing samples were higher than that of unsubstituted hydroxyapatite species by a factor of 2–4 because of the active participation of silicates in the resorption of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. I. V. Fadeeva, L. I. Shvorneva, S. M. Barinov, and V. P. Orlovskii, Inorg. Mater. 39, 947 (2003).

    Article  Google Scholar 

  2. I. Cacciotti, A. Bianco, M. Lombardi, and L. Montanaro, J. Eur. Ceram. Soc. 29, 2969 (2009).

    Article  CAS  Google Scholar 

  3. S. M. Barinov, I. V. Fadeeva, D. Ferro, et al., Russ. J. Inorg. Chem. 53, 164 (2008).

    Article  Google Scholar 

  4. S. M. Barinov and V. S. Komlev, Calcium Phosphate Bioceramics (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  5. E. A. P. De Maeyer, R. M. H. Verbeeck, and D. E. Naessens, J. Cryst. Growth 135, 539 (1994).

    Article  Google Scholar 

  6. E. A. P. De Maeyer, R. M. H. Verbeeck, and I. Y. Pieters, Inorg. Chem. 35, 857 (1996).

    Article  Google Scholar 

  7. L. M. Rodrıguez-Lorenzo, J. N. Hart, and K. A. Gross, Biomaterials 24, 3777 (2003).

    Article  Google Scholar 

  8. H. Chen, K. Sun, Z. Tang, et al., Cryst. Growth & Des. 6, 1504 (2006).

    Article  CAS  Google Scholar 

  9. S. Kannan, J. H. G. Rocha, and J. M. F. Ferreira, Mater. Lett. 60, 864 (2006).

    Article  CAS  Google Scholar 

  10. A. A. Stepuk, A. G. Veresov, V. I. Putlyaev, and Yu. D. Tret’yakov, Dokl. Ross. Akad. Nauk 412, 211 (2007).

    Google Scholar 

  11. O. Frank-Kameneckaya, A. Kol’tsov, M. Kuz’mina, et al., J. Mol. Struct. 992, 9 (2011).

    Article  Google Scholar 

  12. V. S. Komlev, I. V. Fadeeva, A. N. Gurin, et al., Neorg. Mater. 45, 373 (2009).

    Article  Google Scholar 

  13. G. V. Rodicheva, V. P. Orlovskii, V. I. Privalov, et al., Russ. J. Inorg. Chem. 46, 1631 (2001).

    Google Scholar 

  14. L. V. Bel’skaya and O. A. Golovanova, Tooth and Salivary Calculi (Izd-vo Omsk. Gos. Univ., Omsk, 2010) [in Russian].

    Google Scholar 

  15. A. V. Grosser, S. K. Matelo, and T. V. Kupets, Profilaktika Segodnya, No. 10, 6 (2009).

    Google Scholar 

  16. V. I. Putlyaev, Soros. Obrazovat. Zh. 8(1), 44 (2004).

    Google Scholar 

  17. Yu. D. Tret’yakov, Khim. Zhizni, No. 2, 10 (2002).

    Google Scholar 

  18. A. V. Soin, P. V. Evdokimov, A. G. Veresov, and V. I. Putlyaev, Altern. En. Ekol. 45(1), 130 (2007).

    Google Scholar 

  19. T. Tian, D. Jiang, J. Zhang, and Q. Lin, Mater. Sci. Eng. 28, 57 (2008).

    Article  CAS  Google Scholar 

  20. N. V. Bakunova, A. S. Fomin, I. V. Fadeeva, et al., Russ. J. Inorg. Chem. 52, 1492 (2007).

    Article  Google Scholar 

  21. A. Aminian, M. Solati-Hashjin, A. Samadikuchaksaraei, et al., Ceram. Int. 37, 1219 (2011).

    Article  CAS  Google Scholar 

  22. X. L. Tang, X. F. Xiao, and R. F. Liu, Mater. Lett. 59, 3841 (2005).

    Article  CAS  Google Scholar 

  23. A. Bianco, I. Cacciotti, M. Lombardi, and L. Montanaro, Mater. Res. Bull. 44, 345 (2009).

    Article  CAS  Google Scholar 

  24. D. Marchat, M. Zymelka, C. Coelho, et al., Acta Biomater. 9, 6992 (2013).

    Article  CAS  Google Scholar 

  25. N. Y. Mostafa, H. M. Hassan, and O. H. Abd Elkader, J. Am. Ceram. Soc. 94, 1584 (2011).

    Article  CAS  Google Scholar 

  26. A. G. Veresov, V. I. Putlyaev, and Yu. D. Tret’yakov, Ross. Khim. Zh. 48, 52 (2004).

    CAS  Google Scholar 

  27. S. Sprio, A. Tampieri, E. Landi, et al., Mater. Sci. Eng. 28, 179 (2008).

    Article  CAS  Google Scholar 

  28. S. V. Dorozhkin, World J. Methodol. 2(1), 1 (2012).

    Article  Google Scholar 

  29. Yu. Yu. Lur’e, The Handbook of Analytical Chemistry (Khimiya, Moscow, 1989).

    Google Scholar 

  30. S. V. Dorozhkin, J. Mater. Sci., No. 42, 1061 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Solonenko.

Additional information

Original Russian Text © A.P. Solonenko, O.A. Golovanova, 2014, published in Zhurnal Neorganicheskoi Khimii, 2014, Vol. 59, No. 11, pp. 1472–1480.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solonenko, A.P., Golovanova, O.A. Silicate-substituted carbonated hydroxyapatite powders prepared by precipitation from aqueous solutions. Russ. J. Inorg. Chem. 59, 1228–1236 (2014). https://doi.org/10.1134/S0036023614110230

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023614110230

Keywords

Navigation