Skip to main content
Log in

Theoretical study of molecular hydrogen elimination from the undecahydrodecaborate monoanion [B10H11]. Exopolyhedral substitution intermediates: [B10H9] monoanion and neutral [B10H10] cluster

  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The elementary reaction of molecular hydrogen elimination from the [B10H11] anion, which is presumably the rate-limiting stage of acid-catalyzed reactions of substitution of exopolyhedral H atoms in the [B10H10]2− decahydro-closo-decaborate anion, has been calculated by the density functional theory method (in the B3LYP/6-311++G** approximation). Specific transition states of H2 elimination in which vacancies form near the boron atoms have been localized. It has been demonstrated that regioselectivity of substitution reactions can be related to the significant difference between the activation barriers for the pathways of H2 elimination from boron atoms with different coordination numbers (CN 6 and 5). The electron density of the [B10H9] anion that forms after hydrogen molecule elimination has a characteristic shape of the lowest unoccupied molecular orbital for the interaction with nucleophilic reagents; in acid-catalyzed reactions, different anions, for example, a carboxylic acid residue, can act as such. The direct reaction of the [B10H9] intermediate with nucleophilic anions is hindered by the Coulomb charge repulsion. To overcome this hindrance, the possibility of [B10H9] protonation to form the neutral [B10H10] system has been considered. It has been shown that the proton affinity of the [B10H9] anion is ∼280–290 kcal/mol. For the [B10H10] cluster, the lowest-lying and low-lying isomers have been considered. For all the systems under consideration, the electronic chemical potential and Pearson hardness have been evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Hawthorne, Angew. Chem., Int. Ed. Engl. 32, 950 (1993).

    Article  Google Scholar 

  2. K. Yu. Zhizhin, O. O. Vovk, E. A. Malinina, et al., Russ. J. Coord. Chem. 27, 613 (2001).

    Article  CAS  Google Scholar 

  3. K. Yu. Zhizhin, E. A. Malinina, I. N. Polyakova, et al., Russ. J. Inorg. Chem. 47, 1168 (2002).

    Google Scholar 

  4. I. N. Polyakova, V. N. Mustyatsa, K. Yu. Zhizhin, and N. T. Kuznetsov, Crystallogr. Rep. 49, 767 (2004).

    Article  CAS  Google Scholar 

  5. A. M. Mebel, O. P. Charkin, M. Buhl, and P. v. R. Schleyer, Inorg. Chem. 32, 463 (1993).

    Article  CAS  Google Scholar 

  6. V. N. Mustyatsa, K. A. Solntsev, S. G. Sakharov, and N. T. Kuznetsov, Dokl. Chem. 358, 1 (1998).

    Google Scholar 

  7. V. K. Kochnev, V. V. Avdeeva, L. V. Goeva, et al., Russ. J. Inorg. Chem. 57, 331 (2012).

    Article  CAS  Google Scholar 

  8. K. Yu. Zhizhin, Extended Abstract of Doctoral Dissertation in Chemistry (Inst. of Gen. and Inorg. Chem. RAS, Moscow, 2008).

    Google Scholar 

  9. B. M. Mikhailov, The Chemistry of Boron Hydrides) (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  10. V. K. Kochnev, V. V. Avdeeva, E. A. Malinina, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 58, 793 (2013).

    Article  CAS  Google Scholar 

  11. N. T. Kuznetsov and K. A. Solntsev, Chemistry of Inorganic Hydrides, Ed. by N. T. Kuznetsov (Moscow: Nauka, 1990), p. 39 [in Russian].

  12. A. D. J. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  13. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. 37, 785 (1998).

    Article  Google Scholar 

  14. K. E. Riley, B. T. Op’t Holt, and K. M. Merz, Jr., J. Chem. Theor. Comput. 3, 407 (2007).

    Article  CAS  Google Scholar 

  15. R. G. Pearson, Coord. Chem. Rev. 100, 403 (1990).

    Article  CAS  Google Scholar 

  16. V. K. Kochnev, O. P. Charkin, and N. M. Klimenko, Russ. J. Inorg. Chem 54, 1114 (2009).

    Article  Google Scholar 

  17. R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke, J. Chem. Phys. 68, 3801 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Malinina.

Additional information

Original Russian Text © V.K. Kochnev, V.V. Avdeeva, E.A. Malinina, N.T. Kuznetsov, 2014, published in Zhurnal Neorganicheskoi Khimii, 2014, Vol. 59, No. 7, pp. 917–924.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochnev, V.K., Avdeeva, V.V., Malinina, E.A. et al. Theoretical study of molecular hydrogen elimination from the undecahydrodecaborate monoanion [B10H11]. Exopolyhedral substitution intermediates: [B10H9] monoanion and neutral [B10H10] cluster. Russ. J. Inorg. Chem. 59, 706–712 (2014). https://doi.org/10.1134/S0036023614070079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023614070079

Keywords

Navigation