Russian Journal of Inorganic Chemistry

, Volume 59, Issue 4, pp 279–285 | Cite as

Short- and long-range order balance in nanocrystalline Gd2Zr2O7 powders with a fluorite-pyrochlore structure

  • V. V. PopovEmail author
  • Ya. V. Zubavichus
  • A. P. Menushenkov
  • A. A. Yaroslavtsev
  • E. S. Kulik
  • V. F. Petrunin
  • S. A. Korovin
  • N. N. Trofimova
Synthesis and Properties of Inorganic Compounds


A series of nanocrystalline Gd2Zr2O7 powders has been studied using a combination of X-ray diffraction and X-ray spectroscopy with synchrotron radiation. It has been shown that isothermal annealing of an X-ray amorphous mixed hydroxide first leads to the formation of an oxide nanomaterial with a defect fluorite structure and clearly pronounced nonequivalence of the local environment of the Gd3+ and Zr4+ ions. Increasing heat treatment temperature results in initiation and growth of nanodomains with pyrochlore-type superstructure ordering of cations inside bulkier crystallites of defect fluorite. To adequately describe the evolution of the real nanocrystalline structure of gadolinium zirconate, a combination of X-ray structural methods sensitive to the averaged crystal structure and local atomic structure should be used.


Increase Annealing Temperature Coordination Shell Pair Distribution Function Pyrochlore Structure Local Atomic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Subramanian, G. Aravamudan, and G. V. Subba Rao, Prog. Solid State Chem. 15, 55 (1983).CrossRefGoogle Scholar
  2. 2.
    J. Wu, X. Wei, N. P. Padture, et al., J. Am. Ceram. Soc. 85, 3031 (2002).CrossRefGoogle Scholar
  3. 3.
    R. C. Ewing, W. J. Weber, and J. Lian, J. Appl. Phys. 95, 5949 (2004).CrossRefGoogle Scholar
  4. 4.
    V. D. Risovany, A. V. Zakharov, E. M. Muraleva, et al., J. Nucl. Mater. 355, 163 (2006).CrossRefGoogle Scholar
  5. 5.
    A. V. Shlyaktina and L. G. Shcherbakova, Solid State Ionics 192, 200 (2011).CrossRefGoogle Scholar
  6. 6.
    P. E. R. Blanchard, R. Clements, B. J. Kennedy, et al., Inorg. Chem. 51, 13237 (2012).CrossRefGoogle Scholar
  7. 7.
    S. S. Sosin, L. A. Prozorov, and A. I. Smirnov, Usp. Fiz. Nauk 175, 92 (2005).CrossRefGoogle Scholar
  8. 8.
    A. R. Cleave, Ph. D. Thesis (Imperial College, London, 2006).Google Scholar
  9. 9.
    A. V. Shlyaktina, A. D. Belov, S. Yu. Stefanovich, et al., Mater. Res. Bull. 46, 512 (2011).CrossRefGoogle Scholar
  10. 10.
    A. Navrotsky, J. Mater. Chem. 20, 10577 (2010).CrossRefGoogle Scholar
  11. 11.
    E. R. Andrievskaya, J. Eur. Ceram. Soc. 28, 2363 (2008).CrossRefGoogle Scholar
  12. 12.
    J. Wang, A. Nakamura, and M. Takeda, Solid State Ionics 164, 185 (2003).CrossRefGoogle Scholar
  13. 13.
    B. J. Kennedy, Q. Zhou, and M. Avdeev, J. Solid State Chem. 184, 1695 (2011).CrossRefGoogle Scholar
  14. 14.
    Q. Xu, W. Pan, J. Wang, et al., J. Am. Ceram. Soc. 89, 340 (2006).CrossRefGoogle Scholar
  15. 15.
    G. Moskal, L. Swadzba, M. Hetmanczyk, et al., J. Eur. Ceram. Soc. 32, 2025 (2012).CrossRefGoogle Scholar
  16. 16.
    H. Yamamura, H. Nishino, K. Kakinuma, et al., Solid State Ionics 158, 359 (2003).CrossRefGoogle Scholar
  17. 17.
    V. D. Risovanyi and A. V. Zakharov, Izv. Samarsk. Nauch. Tsentra RAN 14, 971 (2012).Google Scholar
  18. 18.
    B. P. Mandal, M. Pandey, and A. K. Tyagi, J. Nucl. Mater. 406, 238 (2010).CrossRefGoogle Scholar
  19. 19.
    E. M. Moroz, Russ. Chem. Rev. 80, 293 (2011).CrossRefGoogle Scholar
  20. 20.
    M. P. Saradhi, S. V. Ushakov, and A. Navrotsky, RSC Adv. 2, 3328 (2012).CrossRefGoogle Scholar
  21. 21.
    V. V. Popov, V. F. Petrunin, S. A. Korovin, et al., Russ. J. Inorg. Chem. 56, 1538 (2011).CrossRefGoogle Scholar
  22. 22.
    V. V. Popov, Ya. V. Zubavichus, V. F. Petrunin, et al., Glass Phys. Chem. 37, 512 (2011).CrossRefGoogle Scholar
  23. 23.
    V. V. Popov, A. P. Menushenkov, Ya. V. Zubavichus, et al., Russ. J. Inorg. Chem. 58, 331 (2013).CrossRefGoogle Scholar
  24. 24.
    V. V. Popov, A. P. Menushenkov, Ya. V. Zubavichus, et al., Russ. J. Inorg. Chem. 58, 1400 (2013).CrossRefGoogle Scholar
  25. 25.
    A. P. Hammersley, S. O. Svensson, M. Hanfland, et al., High Press. Res. 14, 235 (1996).CrossRefGoogle Scholar
  26. 26.
    V. Petricek, M. Dusek, and L. Palatinus, Jana 2006, The Crystallographic Computing System, Inst. of Physics, Prague, 2006.Google Scholar
  27. 27.
    X. Qiu, J. W. Thompson, and S. J. L. Billinge, J. Appl. Crystallogr. 37, 678 (2004).CrossRefGoogle Scholar
  28. 28.
    C. L. Farrow, P. Juhás, J. W. Liu, et al., J. Phys.: Condens. Matter 19, 335219 (2007).Google Scholar
  29. 29.
    J. J. Rehr, J. J. Kas, M. P. Prange, et al., Compt. Rend. Phys. 10, 548 (2009).CrossRefGoogle Scholar
  30. 30.
    G. C. Lau, T. M. McQueen, Q. Huang, et al., J. Solid State Chem. 181, 45 (2008).CrossRefGoogle Scholar
  31. 31.
    C. Karthik, T. J. Anderson, D. Gout, et al., J. Solid State Chem. 194, 168 (2012).CrossRefGoogle Scholar
  32. 32.
    P. E. R. Blanchard, S. Liu, D. J. Kennedy, et al., J. Phys. Chem. 117, 2266 (2013).Google Scholar
  33. 33.
    V. S. Gorshkov, V. G. Savel’ev, and N. F. Fedorov, Physical Chemistry of Silicates and Other Refractory Compounds (Vysshaya shkola, Moscow, 1988) [in Russian].Google Scholar
  34. 34.
    S. V. Ushakov, A. Navrotsky, J. A. Tangeman, et al., J. Am. Ceram. Soc. 90, 1171 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. V. Popov
    • 1
    Email author
  • Ya. V. Zubavichus
    • 2
  • A. P. Menushenkov
    • 1
  • A. A. Yaroslavtsev
    • 1
  • E. S. Kulik
    • 1
  • V. F. Petrunin
    • 1
  • S. A. Korovin
    • 1
  • N. N. Trofimova
    • 2
  1. 1.National Research Nuclear University “MEPhI”MoscowRussia
  2. 2.National Research Center Kurchatov InstituteMoscowRussia

Personalised recommendations