Skip to main content
Log in

Cluster self-organization theory for crystal-forming systems: The geometrical and topological model of formation, selection, and evolution of precursor nanoclusters of molecular and framework compounds

  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

This review concerns the contemporary state of the problem of self-organization in crystal-forming systems, where a long-range order appears spontaneously in the arrangement of nanoscale structural units of any nature (atomic clusters and molecules), which initially existed as a chaotic mixture. Examples are provided where combinatorial topological analysis algorithms are used to restore, from structure data, the convergent matrix self-assembly code of crystal structures in the form of the sequence of significant elementary events e i . For a cyclic six-node cluster S 03 , the geometrical and topological modeling of various self-organization levels of hierarchic structures was carried out for six types of primary chains S 13 , fifteen types of networks S 23 , and thirty types of frameworks S 33 . The model is universal and has been used to model the self-assembly of the following crystal structures: monomolecular compound S6 and bimolecular compound S6 + S10, ozone O3, benzene C6H6, cubane C8H8, Zn4O4 (NaCl structure type), carbon oxides C6-GRA (graphite), C6-DIA (diamond), and C6-LON (lonsdaleite), boron nitrides B3N3-GRB, B3N3-DIA, and B3N3-LON, Ni3As3-NIC, B6(OH)16, zeolite K3(Al2Si4O12(OH)-LIT, Na2ZrSi2O7-PKL (parakeldyshite), La3Ga5GeO14 (LGG), and La3GaGe5O16 (LAN). It is for the first time that structural invariants are recognized in topologically different crystal structures of chemical systems. Bifurcations in the evolution pathways of precursor clusters (structural branching points) have been determined for the formation of three-dimensional periodic structures. Frequency analysis carried out for the topological and symmetry pathways in the formation and evolution of clusters (primary chain S 13 -microlayer S 23 -microframework S 33 ) elucidated new crystal-formation trends in diverse chemical systems at the microscopic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Nicolis, Dynamics of Hierarchical Systems (Springer, Berlin, 1986).

    Book  Google Scholar 

  2. W. Ebeling, A. Engel, and R. Feistel, Physik der Evolutionsprozesse (Akademia, Berlin, 1990; URSS, Moscow, 2001).

    Google Scholar 

  3. B. F. Poglazov, The Assembly of Biological Structures (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  4. M. Eigen, Selforganization of Matter and the Evolution of Biological Macromolecules (Springer, Heidelberg, 1971; Mir, Moscow, 1973).

    Google Scholar 

  5. M. Eigen and P. Schuster, The Hypercycle (Springer, Berlin, 1979; Mir, Moscow, 1982).

    Book  Google Scholar 

  6. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977; Mir, Moscow, 1979).

    Google Scholar 

  7. H. Haken, Synergetics (Springer, Heidelberg, 1978; Mir, Moscow, 1980).

    Book  Google Scholar 

  8. J. Careri, Ordine and Diordine nella Materia (Laterza, Roma, 1982; Mir, Moscow, 1985).

    Google Scholar 

  9. J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives (Wiley/VCH, Weinheim, 1995; Nauka, Novosibirsk, 1998).

    Book  Google Scholar 

  10. J.-M. Lehn, Chem. Soc. Rev. 36, 151 (2007).

    Article  CAS  Google Scholar 

  11. J. Steed and J. L. Atwood, Supramolecular Chemistry (Wiley, New York, 2000).

    Google Scholar 

  12. Supramolecular Polymers, ed. by A. Ciferri (Marcel Dekker, New York, 2005).

    Google Scholar 

  13. G. R. Desiraju, Perspectives in Supramolecular Chemistry (Wiley, Chichester, 1995), Vol. 2.

    Google Scholar 

  14. G. D. Ilyushin and L. N. Dem’yanets, Crystallization Physics. Collected works of the Institute of Crystallography (FIZMATLIT Nauka, Moscow, 2002) [in Russian].

    Google Scholar 

  15. G. D. Ilyushin, Simulation of Self-Organization Process in Crystal-Forming Systems (URSS, Moscow, 2003) [in Russian].

    Google Scholar 

  16. G. D. Ilyushin, Crystallogr. Repts 48, 3 (2004).

    Google Scholar 

  17. G. D. Ilyushin, Russ. J. Inorg. Chem. 56, 2070 (2011).

    Article  CAS  Google Scholar 

  18. G. D. Ilyushin, Struct. Chem. 20, 975 (2012).

    Google Scholar 

  19. G. D. Ilyushin, Russ. J. Inorg. Chem. 57, 1737 (2012).

    Article  CAS  Google Scholar 

  20. B. K. Vainshtein, Modern Crystallography, Vol. 1: Crystal Symmetry. Structural Crystallography Methods (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  21. B. K. Vainshtein, V. M. Fridkin, and L. M. Indenbom, Modern Crystallography, Vol. 2: Crystal Structure (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  22. P. Engel, Geometric Crystallography (D. Reidel, Dordrecht, 1986).

    Book  Google Scholar 

  23. R. V. Galiulin, Crystallographic Geometry (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  24. A. Wells, Structural Inorganic Chemistry (Clarendon, Oxford (U.K.), 1984; Mir, Moscow, 1987).

    Google Scholar 

  25. P. Villars and K. Cenzual, Pearson’s Crystal Data Crystal Structure Database for Inorganic Compounds (on CD-ROM) (ASM International, Materials Park, OH).

  26. Inorganic Crystal Structure Database (ICSD) (Fachinformationszentrum, Karlsruhe (FIZ) and US National Institute of Standart and Technology (NIST)).

  27. Cambridge Structural Database System (CSD) (Cambridge Crystallographic Data Centre).

  28. G. D. Ilyushin and V. A. Blatov, Crystallogr. Repts 56, 75 (2011).

    Article  CAS  Google Scholar 

  29. V. A. Blatov and G. D. Ilyushin, Crystallogr. Repts 57, 885 (2012).

    Article  CAS  Google Scholar 

  30. G. D. Ilyushin and V. A. Blatov, Crystallogr. Repts 58, 531 (2013).

    Article  CAS  Google Scholar 

  31. G. D. Ilyushin and V. A. Blatov, Crystallogr. Repts 57, 3 (2012).

    Google Scholar 

  32. V. Ya. Shevchenko, V. A. Blatov, and G. D. Ilyushin, Struct. Chem. 20, 975 (2009).

    Article  CAS  Google Scholar 

  33. V. A. Blatov, G. D. Ilyushin, and D. M. Proserpio, Inorg. Chem. 49, 1811 (2010).

    Article  CAS  Google Scholar 

  34. V. A. Blatov and G. D. Ilyushin, Crystallography Repts 57(7), 13 (2012).

    Google Scholar 

  35. V. A. Blatov and G. D. Ilyushin, Crystallography Repts 55, 1100 (2010).

    Article  CAS  Google Scholar 

  36. G. D. Ilyushin and V. A. Blatov, Crystallogr. Repts 55, 1093 (2010).

    Article  CAS  Google Scholar 

  37. V. A. Blatov, IUCr CompComm Newsletter, No. 7, 4 (2006).

    Google Scholar 

  38. V. A. Blatov, Struct. Chem. 23, 955 (2012).

    Article  CAS  Google Scholar 

  39. V. A. Blatov, G. D. Ilyushin, and D. M. Proserpio, Chem. Mater. 25, 412 (2013).

    Article  CAS  Google Scholar 

  40. M. V. Peskov, V. A. Blatov, G. D. Ilyushin, and U. J. Schwingenschlög, Phys. Chem. C 116, 6734 (2012).

    Article  CAS  Google Scholar 

  41. A. I. Kitaigorodsky, Molecular Crystals (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  42. A. I. Kitaigorodsky, Mixed Crystals (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Ilyushin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilyushin, G.D. Cluster self-organization theory for crystal-forming systems: The geometrical and topological model of formation, selection, and evolution of precursor nanoclusters of molecular and framework compounds. Russ. J. Inorg. Chem. 58, 1625–1667 (2013). https://doi.org/10.1134/S0036023613130020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023613130020

Keywords

Navigation