Russian Journal of Inorganic Chemistry

, Volume 58, Issue 8, pp 945–950 | Cite as

XPS study of the electronic structure of heterometallic complexes Fe2MO(Piv)6(HPiv)3 (M = Ni, Co)

  • T. M. Ivanova
  • I. N. Shcherbakov
  • R. V. Linko
  • M. A. Kiskin
  • I. S. Evstifeev
  • A. A. Sidorov
  • V. M. Novotortsev
  • I. L. Eremenko
Physical Methods of Investigation

Abstract

Heterometallic complexes Fe2MO(Piv)6(HPiv)3 (M = Ni, Co) have been studied by XPS. The complexes are identified as high-spin complexes with metal atoms in oxidation states M(II) and M(III). A change in the ligand environment of metal atoms has an effect on both the energetic state of metal atoms and the XPS pattern. The substitution of a Co atom for the nickel atom in the heterometallic complexes changes the XPS pattern of iron and their magnetic state. For the Fe2MO(Piv)6(HPiv)3 complexes, quantum-chemical calculations have been performed at the density functional theory (DFT) level. In combination with XPS and magnetochemistry data, the quantum-chemical calculation demonstrates that the Fe, Ni, and Co atoms in the trinuclear complexes are in the high-spin local state and that the ground state is dominated by antiferromagnetic exchange interaction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. S. Fadley and D. A. Shirley, J. Chem. Phys. 57, 973 (1972).CrossRefGoogle Scholar
  2. 2.
    D. C. Frost, C. F. McDowell, and I. S. Woolsey, Mol. Phys. 27, 1473 (1974).CrossRefGoogle Scholar
  3. 3.
    V. I. Nefedov, Koord. Khim 1, 310 (1975).Google Scholar
  4. 4.
    H. Burness and J. G. Dillard, J. Am. Chem. Soc. 97, 6080 (1975).CrossRefGoogle Scholar
  5. 5.
    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
  6. 6.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).CrossRefGoogle Scholar
  7. 7.
    M. J. Frisch, et al., Gaussian 03, Revision E.1, 2003.Google Scholar
  8. 8.
    A. P. Ginsberg, J. Am. Chem. Soc. 102, 111 (1980).CrossRefGoogle Scholar
  9. 9.
    L. Noodleman, J. Chem. Phys. 74, 5737 (1981).CrossRefGoogle Scholar
  10. 10.
    R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, Oxford, 1989).Google Scholar
  11. 11.
    M. A. Kiskin, I. G. Fomina, A. A. Sidorov, et al., Izv. Akad. Nauk, Ser. Khim., No. 11, 2403 (2004).Google Scholar
  12. 12.
    R. A. Polunin, M. A. Kiskin, O. Cador, et al., Inorg. Chim. Acta 380, 201 (2012).CrossRefGoogle Scholar
  13. 13.
    Yu. G. Borod’ko, Yu. I. Vetchinkin, S. L. Zimont, et al., Chem. Phys. Lett. 42, 264 (1976).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • T. M. Ivanova
    • 1
  • I. N. Shcherbakov
    • 2
  • R. V. Linko
    • 3
  • M. A. Kiskin
    • 1
  • I. S. Evstifeev
    • 1
  • A. A. Sidorov
    • 1
  • V. M. Novotortsev
    • 1
  • I. L. Eremenko
    • 1
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Southern Federal UniversityRostov-on-DonRussia
  3. 3.Peoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations