Skip to main content
Log in

Interaction of dioxygen with the platinum Pt19/SnO2/H2 cluster: DFT calculation

  • Theoretical Inorganic Chemistry
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The adsorption of the O2 molecule onto the surface of the Pt19 platinum cluster deposited onto the tin dioxide crystal surface in the presence of dissociated hydrogen molecule has been calculated by the density functional theory method within the generalized gradient approximation (GGA-PBE) with periodic boundary conditions and a projector-augmented plane-wave (PAW) basis set. It has been demonstrated that the oxygen molecule can be adsorbed without a barrier onto the free surface of the Pt19/SnO2/H2 cluster to form a superoxy isomer with one Pt-O bond (the energy of elimination of the oxygen molecule is 0.75 eV), which converts almost without a barrier to more stable peroxide isomers with two Pt-O bonds (the energy of elimination of the O2 molecule is 1.2−1.7 eV). The energy of elimination of the oxygen molecule from the isomers with two-coordinated oxygen positions at the cluster edges is 2.10−2.53 eV. The isomers with mono- and tricoordinated oxygen positions are less energetically favorable than the isomers with two-coordinated oxygen positions. The process of addition of the oxygen molecule to the platinum cluster and elimination of the water molecule formed in the reaction Pt19/SnO2/H2 + O2 → Pt19/SnO2/O + H2O is energetically favorable by 1.6 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. M. Markovic and P. N. Ross, CATTEC 4, 110 (2000).

    Article  CAS  Google Scholar 

  2. J. K. Nørskoc, J. Rossmeisl, A. Logadottir, et al., J. Phys. Chem. B 108, 17886 (2004).

    Article  Google Scholar 

  3. J. Wu, X. Z. Yuan, J. J. Martin, et al., J. Power Sources 184, 104 (2008).

    Article  CAS  Google Scholar 

  4. C. Zhou, D. Savant, H. Ghassemi, et al., Encyclopedia of Electrochemical Power Sources, Ed. by J. Garche, C. K. Dyer, P. T. Moseley, et al. (Elsevier, Amsterdam, 2009), p. 755.

  5. R. Adzic, Electrocatalysis, Ed. by J. Lipkowski and P. N. Ross (Wiley/VCH, New York, 1998), chapter 5.

  6. J. O. M. Bockris and S. U. M. Khan, Surface Electrochemistry: A Molecular Level Approach (Plenum, New York, 1993).

    Book  Google Scholar 

  7. A. Damjanovic, Electrochemistry in Transition: From the 20th to the 21st Century, Ed. by O. J. Murphy and S. Srinivasan (Plenum, New York, 1992), part III(9).

  8. A. J. Appleby, J. Electroanal. Chem. 357, 117 (1993).

    Article  CAS  Google Scholar 

  9. N. M. Markovic and P. N. Ross, Jr., Surf. Sci. Rep. 45, 117 (2002).

    Article  CAS  Google Scholar 

  10. N. M. Markovic and P. N. Ross, Jr., Interfacial Electrochemistry, Ed. by A. Wieckowski (Marcel Dekker, New York, 1999), chapter 46.

  11. M. T. M. Koper, Modern Aspects of Electrochemistry, No. 36, Ed. by C. G. Vayenas, B. E. Conway, and R. E. White (Kluwer, New York, 2003), chapter 2.

  12. W. Schmickler, Ann. Rep. Progr. Chem. Sect. C 95, 117 (1999).

    Article  CAS  Google Scholar 

  13. Y. Y. Yeo, L. Vattuone, and D. A. King, J. Chem. Phys. 106, 392 (1997).

    Article  CAS  Google Scholar 

  14. B. Hammer and J. K. Norskov, Adv. Catal. 45, 71 (2000).

    Article  CAS  Google Scholar 

  15. M. S. Nashner, A. I. Frenkel, D. Somerville, et al., J. Am. Chem. Soc. 120, 8093 (1998).

    Article  CAS  Google Scholar 

  16. M. S. Nashner, A. I. Frenkel, D. L. Adler, et al., J. Am. Chem. Soc. 119, 7760 (1997).

    Article  CAS  Google Scholar 

  17. S. K. Gupta, B. M. Nappi, and K. A. Gingerich, Inorg. Chem. 20, 966 (1981).

    Article  CAS  Google Scholar 

  18. T. Li and P. B. Balbuena, J. Phys. Chem. B 105, 9943.

  19. J. K. Burdett, Chemical Bonding in Solids (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  20. Catalysis and Electrocatalysis at Nanoparticle Surfaces, Ed. by A. Wieckowski, E. R. Savinova, and C. G. Vayenas (Marcel Dekker, New York, 2003), p. 455.

    Google Scholar 

  21. B. C. Han and G. Ceder, Phys. Rev. B 74, 205418 (2006).

    Article  Google Scholar 

  22. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  23. H. Nakatsuji, Y. Matsuzaki, and T. Yonezawa, J. Chem. Phys. 88, 5759 (1988).

    Article  CAS  Google Scholar 

  24. B. Yang, Q. Lu, Y. Wang, et al., Chem. Mater. 15, 3552 (2003).

    Article  CAS  Google Scholar 

  25. T. Z. Qun, X. F. Yan, and S. P. Kang, J. Mater. Sci. 39, 1507 (2004).

    Article  Google Scholar 

  26. L. Chen, A. C. Cooper, G. P. Pez, and H. Cheng, J. Phys. Chem. 111, 5514 (2007).

    CAS  Google Scholar 

  27. J. Hafner, J. Comput. Chem. 29, 2044 (2008).

    Article  CAS  Google Scholar 

  28. G. Kresse and J. Hafner, Phys. Rev. 47, 558.

  29. G. Kresse and J. Hafner, Phys. Rev. 49, 14251.

  30. G. Kresse and J. Furthmüller, Comput. Mat. Sci 6, 15 (1996).

    Article  CAS  Google Scholar 

  31. G. Kresse and J. Furthmüller, Phys. Rev. 54, 11169.

  32. G. Kresse and D. Joubert, Phys. Rev. 59, 1758.

  33. T. S. Zyubina, A. S. Zyubin, Yu. A. Dobrovol’skii, et al., Russ. J. Inorg. Chem. 56, 1294 (2011).

    Google Scholar 

  34. J. E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity (Harper and Row, New York, 1983; Khimiya, Moscow, 1987).

    Google Scholar 

  35. CRC Handbook of Chemistry and Physics, 83rd ed. (CRC Press, Boca Raton, 2002).

  36. Y. Xu, A. V. Ruban, and M. Mavrikakis, J. Am. Chem. Soc. 126, 4717 (2004).

    Article  CAS  Google Scholar 

  37. J. L. Gland, Surf. Sci. 93, 487 (1980).

    Article  CAS  Google Scholar 

  38. H. Steininger, S. Lehwald, and H. Ibach, Surf. Sci. 123, 1 (1982).

    Article  CAS  Google Scholar 

  39. Y. Y. Yeo, L. Vattuone, and D. A. King, J. Chem. Phys. 106, 392 (1997).

    Article  CAS  Google Scholar 

  40. J. L. Gland, B. A. Sexton, and G. B. Fisher, Surf. Sci. 95, 587 (1980).

    Article  CAS  Google Scholar 

  41. C. T. Campbell, G. Ertl, H. Kuipers, and J. Segner, Surf. Sci. 107, 221 (1981).

    Google Scholar 

  42. D. H. Parker, M. E. Bartram, and B. E. Koel, Surf. Sci. 217, 489 (1989).

    Article  CAS  Google Scholar 

  43. A. Winkler, X. Guo, H. R. Siddiqui, et al., Surf. Sci. 201, 419 (1998).

    Article  Google Scholar 

  44. W. A. Brown, R. Kose, and D. A. King, Chem. Rev. 98, 797 (1998).

    Article  CAS  Google Scholar 

  45. G. A. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994).

    Google Scholar 

  46. N. M. Markovic, T. J. Schmidt, B. N. Grgur, et al., J. Phys. Chem. B 103, 8568 (1999).

    Article  CAS  Google Scholar 

  47. A. Eichler, F. Mittendorfer, and J. Hafner, Phys. Rev. B 62, 4744 (2000).

    Article  CAS  Google Scholar 

  48. A. Eichler and J. Hafner, Phys. Rev. Lett. 79, 4481 (1997).

    Article  CAS  Google Scholar 

  49. R. M. Watwe, R. D. Cortright, M. Mavrikakis, et al., J. Chem. Phys. 114, 4663 (2001).

    Article  CAS  Google Scholar 

  50. B. Hammer and J. K. Norskov, Adv. Catal. 45, 71 (2000).

    Article  CAS  Google Scholar 

  51. A. Bogicevic, J. Stromquist, and B. I. Lundqvist, Phys. Rev. B 57, R4289 (1998).

    Article  CAS  Google Scholar 

  52. K. Bleakley and P. Hu, J. Am. Chem. Soc. 121, 7644 (1999).

    Article  CAS  Google Scholar 

  53. Y. Xu, A. V. Ruban, and M. Mavrikakis, J. Am. Chem. Soc. 126, 4717 (2004).

    Article  CAS  Google Scholar 

  54. B. C. Han, C. R. Miranda, and G. Ceder, Phys. Rev. B 77, 075410 (2008).

    Article  Google Scholar 

  55. A. Kokalj, A. Lesar, M. Hodošček, and M. Causa, J. Phys. Chem. B 103, 7222 (1999).

    Article  CAS  Google Scholar 

  56. R. Illas, J. Rubio, J. M. Ricart, and G. Pacchioni, J. Chem. Phys. 105, 7192 (1996).

    Article  CAS  Google Scholar 

  57. T. Li and P. B. Balbuena, J. Phys. Chem. B 105, 9943 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © T.S. Zyubina, A.S. Zyubin, Yu.A. Dobrovol’skii, V.M. Volokhov, 2013, published in Zhurnal Neorganicheskoi Khimii, 2013, Vol. 58, No. 3, pp. 360–369.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zyubina, T.S., Zyubin, A.S., Dobrovol’skii, Y.A. et al. Interaction of dioxygen with the platinum Pt19/SnO2/H2 cluster: DFT calculation. Russ. J. Inorg. Chem. 58, 311–319 (2013). https://doi.org/10.1134/S0036023612120236

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023612120236

Keywords

Navigation