Skip to main content

Activation of molecular hydrogen on platinum nanoparticles: Quantum-chemical modeling

Abstract

The interaction of molecular hydrogen with platinum clusters of different size has been modeled by the density functional theory method within the generalized gradient approximation (GGA). The cluster size turns out to have little effect on the interaction energy, whereas the effect of the cluster structure is rather significant. The most efficient interaction with hydrogen is observed for clusters with a structure resembling the crystal structure of platinum metal. In such clusters, the hydrogen molecule is attached to its surface without a barrier. Configurations with the bidentate hydrogen coordination are the most stable ones. The H atoms can migrate over the cluster surface, overcoming moderate potential barriers of ∼0.3–0.4 eV.

This is a preview of subscription content, access via your institution.

References

  1. Yu. A. Dobrovol’skii, L. A. Frolova, A. V. Arsatov, and Chzhao Tszin, Catalysts for Low-Temperature Fuel Cells. Organic and Hybrid Nanomaterials, Ed. by V. F. Razumov and M. V. Klyuev (Ivanovsk. Gos. Univ., Ivanovo, 2009) [in Russian].

    Google Scholar 

  2. P. A. Attwood, B. D. McNicol, and R. T. Short, J. Appl. Electrochem. 10, 213 (1980).

    Article  CAS  Google Scholar 

  3. S. Mukerjee and J. McBreen, J. Electroanal. Chem. 448, 163 (1998).

    Article  CAS  Google Scholar 

  4. S. D. Knights, K. M. Colbow, J. St-Pierre, and D. P. Wilkinson, J. Power Sources 127, 127 (2002).

    Article  Google Scholar 

  5. Kwong-Yu Chan, Jie Ding, Jiawen Ren, et al., J. Mater. Chem. 14, 505 (2004).

    Article  CAS  Google Scholar 

  6. Vijay Kumar and Yoshiyuki Kawazoe, Phys. Rev. B: 77, 205418 (2008).

    Article  Google Scholar 

  7. J. Hafner, J. Comput. Chem. 29, 2044 (2008).

    Article  CAS  Google Scholar 

  8. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  9. G. Kresse and J. Hafner, Phys. Rev. B: 47, 558 (1993).

    Article  CAS  Google Scholar 

  10. G. Kresse and J. Hafner, Phys. Rev. B: 49, 14251 (1994).

    Article  CAS  Google Scholar 

  11. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  12. G. Kresse and J. Furthmuller, Phys. Rev. B: 54, 11169 (1996).

    Article  CAS  Google Scholar 

  13. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., GAUSSIAN 98, Revision A.7, Gaussian, Inc., PA, 1998.

    Google Scholar 

  14. G. Kresse and D. Joubert, Phys. Rev. B: 59, 1758 (1999).

    Article  CAS  Google Scholar 

  15. Platinum, Wikipedia.

  16. S. R. Morrison, The Chemical Physics of Surfaces (Plenum Press, New York, 1977; Mir, Moscow, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.S. Zyubin, T.S. Zyubina, Yu.A. Dobrovol’skii, V.M. Volokhov, Z.G. Bazhanova, 2011, published in Zhurnal Neorganicheskoi Khimii, 2011, Vol. 56, No. 8, pp. 1360–1370.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zyubin, A.S., Zyubina, T.S., Dobrovol’skii, Y.A. et al. Activation of molecular hydrogen on platinum nanoparticles: Quantum-chemical modeling. Russ. J. Inorg. Chem. 56, 1290 (2011). https://doi.org/10.1134/S0036023611080304

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1134/S0036023611080304

Keywords

  • Molecular Hydrogen
  • Hydrogen Molecule
  • Potential Curve
  • Cluster Surface
  • Platinum Atom