Skip to main content
Log in

Electronic state of the 57Fe probe atoms in perovskites LaMO3 (M = Ni, Cu)

  • Electronic Structure
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Mössbauer spectroscopy has been applied for comparative study of the electronic state of probe iron atoms in perovskite-like nikelate LaNi0.99 57Fe0.01O3 and cuprate LaCu0.99 57Fe0.01O3. The valence states of the 57Fe atoms in these isostructural matrices are significantly different. In the nikelate, the iron atoms are in one of its ordinary valence state Fe3+, whereas, in the cuprate, the iron atoms have the formal oxidation state +4, as follows from hyperfine coupling parameters. The observed differences between the valence states of the 57Fe probe atoms are attributed to the different electronic structures of the Ni and Cu atoms in the perovskites. Configuration interaction calculations show that the major contribution to the electronic state of the cation-anion complex [NiO6]9− in the nikelate is made by the d 7 configuration. For the cuprate, the d 9 \( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} \) configuration dominates the electronic state of the [CuO6]9− complex. The existence of one electron hole (\( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} \)) on oxygen atoms leads to partial charge transfer from the doped iron atoms in the cuprate, Fe3+ (d 5) + O (\( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} \)) → Fe4+ (d 4) + O2−. As a result, the ground state of the dopant cation-anion complex FeO6 can be represented as a superposition of configurations, d 4 (55%) and d 5 \( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{L} \) (45%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Buffat, G. Demazeau, M. Pouchard, et al., Acad. Sci. Ser. II 292, 509 (1981).

    CAS  Google Scholar 

  2. M. Takano, N. Nakanishi, Y. Takada, et al., Mater. Res. Bull. 12, 923 (1977).

    Article  CAS  Google Scholar 

  3. M. Takano, S. Nasu, T. Abe, et al.,Phys. Rev. Lett. 67, 3267 (1991).

    Article  CAS  Google Scholar 

  4. Y. Takeda, S. Naka, and M. Takano, J. Phys. 40, 331 (1979).

    Google Scholar 

  5. T. Takeda, S. Komura, and H. Fujii, J. Magn. Magn. Mater. 31–34, 797 (1983).

    Article  Google Scholar 

  6. J.-C. Grenier, N. Ea, and M. Pouchard, Mater. Res. Bull. 19, 1301 (1984).

    Article  CAS  Google Scholar 

  7. S.-J. Kim, G. Demazeau, I. Presniakov, et al., J. Am. Ceram. Soc. 123, 8127 (2001).

    CAS  Google Scholar 

  8. S.-J. Kim, G. Demazeau, I. Presniakov, et al., Phys. Rev. B: Condens. Matter 66, 014427 (2002).

    Google Scholar 

  9. I. Presniakov, G. Demazeau, A. Baranov, et al., Phys. Rev. B: Condens. Matter 71, 054409 (2005).

    Google Scholar 

  10. M. L. Medarde, J. Phys.: Condens. Matter 9, 1679 (1997).

    Article  CAS  Google Scholar 

  11. A. W. Webb, K. H. Kim, and C. Bouldin, Solid State Commun. 79, 507 (1991).

    Article  CAS  Google Scholar 

  12. J. H. Choy, D. K. Kim, S. H. Hwang, and G. Demazeau, Phys. Rev. B: Condens. Matter 50, 16631 (1994).

    CAS  Google Scholar 

  13. T. Mizokawa, A. Fujimori, N. Namatame, et al., Phys. Rev. B: Condens. Matter 57, 9550 (1998).

    CAS  Google Scholar 

  14. G. Demazeau, A. Baranov, G. Heymann, et al., Solid State Sci. 9, 376 (2007).

    Article  CAS  Google Scholar 

  15. I. Presniakov, G. Demazeau, A. Baranov, et al., J. Solid State Chem. 180, 3253 (2007).

    Article  CAS  Google Scholar 

  16. J. B. Goodenough, N. F. Mott, M. Pouchard, and G. Demazeau, Mater. Res. Bull. 8, 647 (1973).

    Article  CAS  Google Scholar 

  17. H. Huppertz, Z. Kristallogr. 219, 330 (2004).

    Article  CAS  Google Scholar 

  18. A. Wold, B. Post, and E. Banks, J. Am. Chem. Soc. 79, 4911 (1957).

    Article  CAS  Google Scholar 

  19. G. Demazeau, C. Parent, M. Pouchard, and P. Hagenmuller, Mater. Res. Bull. 7, 913 (1972).

    Article  CAS  Google Scholar 

  20. D. B. Currie and M. T. Weller, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 47, 696 (1991).

    Article  Google Scholar 

  21. C. Weigl and K. J. Range, J. Alloys Comp. 200, L1 (1993).

    Article  CAS  Google Scholar 

  22. F. Menil, J. Phys. Chem. Solids 46, 763 (1985).

    Article  CAS  Google Scholar 

  23. F. Yill, Y. Gros, F. Hartmann-Bourton, et al., Hyperfine Interact. 93, 1705 (1994).

    Article  Google Scholar 

  24. R. D. Shannon, Acta Crystallogr., Sect. A: Found. Crystallogr. 32, 751 (1976).

    Article  Google Scholar 

  25. J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).

    Article  CAS  Google Scholar 

  26. G. Van der Laan, B. T. Thole, G. A. Sawatzky, et al., Phys. Rev. B: Condens. Matter 33, 4253 (1986).

    Google Scholar 

  27. Z. Hu, G. Kaindl, S. A. Warda, et al., Chem. Phys. 232, 63 (1998).

    Article  CAS  Google Scholar 

  28. T. Mizokawa, A. Fujimori, T. Arima, et al., Phys. Rev. B: Condens. Matter 52, 13865 (1995).

    CAS  Google Scholar 

  29. T. Mizokawa, A. Fujimori, N. Namatame, et al., Phys. Rev. B: Condens. Matter 49, 7193 (1994).

    CAS  Google Scholar 

  30. R. Iczkowski and J. Margrave, J. Am. Chem. Soc. 83, 3547 (1961).

    Article  CAS  Google Scholar 

  31. R. Ingalls, A. Van der Woude, and G. A. Sawatzky, Mössbauer Isomer Shifts, Ed. by G. K. Shenoy and F. E. Wagner (North-Holland, Amsterdam, 1978).

    Google Scholar 

  32. A. E. Bocquet, A. Fujimori, T. Mizokawa, et al., Phys. Rev. B 45, 1561 (1992).

    Article  CAS  Google Scholar 

  33. G. Demazeau, N. Chevreau, L. Fournus, et al., Rev. Chim. Miner. 20, 155 (1983).

    CAS  Google Scholar 

  34. V. S. Rusakov and D. A. Khramov, Bull. Russ. Acad. Sci. Phys 56(7), 1118 (1992).

    Google Scholar 

  35. G. Martinez-Pinedo, P. Schwerdtfeger, E. Caurier, et al., Phys. Rev. Lett. 87, 062701 (2001).

    Article  CAS  Google Scholar 

  36. I. A. Presniakov, V. S. Rusakov, T. V. Gubaidulina, et al., Phys. Rev. B: Condens. Matter 76, 214407 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.A. Presnyakov, V.S. Rusakov, A.V. Sobolev, G. Demazeau, A. V. Baranov, T.V. Gubaidulina, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 12, pp. 2039–2045.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Presnyakov, I.A., Rusakov, V.S., Sobolev, A.V. et al. Electronic state of the 57Fe probe atoms in perovskites LaMO3 (M = Ni, Cu). Russ. J. Inorg. Chem. 54, 1957–1963 (2009). https://doi.org/10.1134/S0036023609120195

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023609120195

Keywords

Navigation