Skip to main content
Log in

Theoretical study of the model reaction of oxidation of methane to methyl alcohol by Fe(P)O(NH2) and related oxoferryl porphyrin complexes (P = C20H12N4)

  • Electronic Structure
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The potential energy surfaces (PESs) of the model reactions Fe(P)O(NX2) + CH4 → Fe(P)(NX2) + CH3OH (X = H, F, Li) in the isolated state with different multiplicity have been calculated by the density functional theory B3LYP method with the 6-31G and 6-31G* basis sets. The optimized geometric, energetic, and spectroscopic characteristics of the key structures corresponding to local minima and transition states on the PES are determined; the energies and potential barriers of the reactions have been estimated, and their behavior as a function of the gas-phase states multiplicity and the electronegativity of the substituent X in the axial amino group has been studied. For all reactions, the lowest barriers are observed for the closely spaced quartet and doublet terms. The barriers considerably increase when the H atoms in the amino group are replaced by more electronegative atoms (F) and slightly decrease when H is replaced by more electropositive atoms (Li). On the basis of calculations for some structures corresponding to the stationary points on the PES of an analogous reaction of methane oxidation with the binuclear μ-N complex Fe(P)Fe(P)O, it was assumed that the effect of the second porphyrin ring on the upper active site in the binuclear μ-N complex is not too different from the effect of the amino group in the mononuclear complex Fe(P)O(NH2) and that the role of the second ring in the μ-N complex is mainly reduced to the steric protection of the nitrogen atom from the interaction with the oxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Shteinman, Usp. Khim. 77(11) (2008).

  2. M. Merkx, D. A. Kopp, M. H. Sazinsky, et al., Angew. Chem., Int. Ed. 40, 2783 (2001).

    Google Scholar 

  3. M. H. Baik, M. Newcomb, R. A. Friesner, and S. J. Lippard, Chem. Rev. 103, 2385 (2003).

    Article  CAS  Google Scholar 

  4. E. G. Kovaleva, M. B. Neibergall, S. Chakrabarty, and J. D. Lipscomb, Acc. Chem. Res. 40, 475 (2007).

    Article  CAS  Google Scholar 

  5. L. Shu, J. C. Nesheim, K. Kauffmann, et al., Science 275, 515 (1997).

    Article  CAS  Google Scholar 

  6. E. Y. Tshuva and S. J. Lippard, Chem. Rev. 104, 987 (2004).

    Article  CAS  Google Scholar 

  7. M. Costas, J.-U. Rohde, A. Stubna, et al., J. Am. Chem. Soc. 123, 12931 (2001).

    Article  CAS  Google Scholar 

  8. A. B. Sorokin, E. V. Kudrika, and D. Bouchub, J. Chem. Soc., Chem. Commun., 2562 (2008).

  9. P. Mars and D. W. Van Krevelen, Chem. Eng. Sci. Suppl. 3, 3 (1954).

    Google Scholar 

  10. S. Shaik, H. Hirao, and D. Kumar, Acc. Chem. Res. 40, 532 (2007).

    Article  CAS  Google Scholar 

  11. S. Shaik, D. Kumar, and S. de Visser, J. Am. Chem. Soc. 130(31), 10128 (2008).

    Article  CAS  Google Scholar 

  12. G. Fu, Z.-N. Chen, X. Xu, and H.-L. Wan, J. Phys. Chem. A 112, 717 (2008).

    Article  CAS  Google Scholar 

  13. S. Shaik, S. Cohen, S. P. de Visser, et al., Eur. J. Inorg. Chem., 207 (2004).

  14. F. Ogliaro, N. Harris, S. Cohen, et al., J. Am. Chem. Soc. 122, 8977 (2000).

    Article  CAS  Google Scholar 

  15. S. Shaik, H. Hirao, and D. Kumar, Nat. Prod. Rep. 24, 533 (2007).

    Article  CAS  Google Scholar 

  16. O. P. Charkin, A. V. Makarov, and N. M. Klimenko, Zh. Neorg. Khim. 53, 716 (2008) [Russ. J. Inorg. Chem. 53(5), 718 (2008)].

    Google Scholar 

  17. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  18. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter 37, 785 (1988).

    CAS  Google Scholar 

  19. J. P. Pewder, Phys. Rev. B: Condens. Matter 33, 8822 (1986).

    Google Scholar 

  20. M. Frish et al., GAUSSIAN 03, Revision B.03 (Gaussian, Inc., Pittsburg, PA, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Charkin.

Additional information

Original Russian Text © O.P. Charkin, A.V. Makarov, N.M. Klimenko, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 9, pp. 1493–1502.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charkin, O.P., Makarov, A.V. & Klimenko, N.M. Theoretical study of the model reaction of oxidation of methane to methyl alcohol by Fe(P)O(NH2) and related oxoferryl porphyrin complexes (P = C20H12N4). Russ. J. Inorg. Chem. 54, 1424–1432 (2009). https://doi.org/10.1134/S0036023609090149

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023609090149

Keywords

Navigation