Skip to main content
Log in

On the matrix stabilization of unstable oxidation states: 1. Experimental foundations

  • Theoretical Inorganic Chemistry
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The state of the art of the problem of matrix stabilization of transition metal ions in unstable oxidation states is surveyed. Basic aspects of the problem concerning the genealogy of matrix systems suitable for the stabilization of this property are classified. Appropriate examples are given, and the data that do not fit the suggested scheme are discussed. This is the case, in particular, for cluster systems stabilized in frozen aqueous solutions, as well as for clusters formed under simpler conditions. The problem of identification of oxidation states in matrix systems, as well as the types of matrices suitable for the stabilization of unstable oxidation states and methods of their stabilization in matrix systems, is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Al’tshuller and B. M. Kozyrev, Electronic Paramagnetic Resonance of Compounds of Intermediate Group Elements, (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  2. B. A. Volkov, L. I. Ryabova, and D. R. Khokhlov, Usp. Fiz. Nauk 172, 875 (2002).

    Article  Google Scholar 

  3. W. E. Pickett, Rev. Mod. Phys. 61, 434 (1989).

    Google Scholar 

  4. Yu. D. Tret’yakov and E. A. Gudilin, Usp. Khim. 69, 3 (2000).

    Google Scholar 

  5. K. V. Mitsen and O. M. Ivanenko, Usp. Fiz. Nauk 174, 546 (2004).

    Article  Google Scholar 

  6. P. A. Lee, N. Nagaosa, and X-G. Wen, Rev. Mod. Phys. 78, 17 (2006).

    Article  CAS  Google Scholar 

  7. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979; Mir, Moscow, 1982).

    Google Scholar 

  8. V. S. Urusov, Soros. Obrazovat. Zh., No. 11, 54 (1996).

  9. D. Reinen, U. Kesper, M. Atanasov, and J. Roos, Inorg. Chem. 34, 184 (1995).

    Article  CAS  Google Scholar 

  10. S. Kueck, S. Hartung, S. Hurling, et al., Phys. Rev. B 57, 2203 (1998).

    Article  Google Scholar 

  11. Hanbook on Lasers, Ed. by A. M. Prokhorov (Sovetskoe Radio, Moscow, 1978), Vol. 1 [in Russian].

    Google Scholar 

  12. A. A. Kaminskii, Laser Crystals (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  13. M. Weber, Handbook on the Physics and Chemistry of Rare Earths, Ed. by K. A. Gschneidner and L. Eyring (Holland Publ., Amsterdam, 1979), p. 1.

    Google Scholar 

  14. J. O. Rubio, J. Phys. Chem. Solids 52, 101 (1991).

    Article  Google Scholar 

  15. W. A. Hargreaves, Phys. Rev. B: 44, 5293 (1991).

    Article  CAS  Google Scholar 

  16. M. Danilkin, M. Must, E. Pedak, et al., Zh. Prikl. Spectrosk. 62(3), 186 (1995).

    CAS  Google Scholar 

  17. S. O. Klimonskii, A. E. Primenko, V. D. Kuznetsov, et al., Zh. Eksp. Teor. Fiz. 113, 1698 (1998).

    CAS  Google Scholar 

  18. V. P. Golenko, V. A. Vanyshev, E. V. Polyanskii, et al., Razved. Okhr. Nedr, No. 3, 19 (1995).

  19. A. V. Gaister, E. V. Zharikov, V. F. Lebedev, et al., Kvant. Elektr. 39, 693 (2004).

    Article  Google Scholar 

  20. Ph. Egger and J. Hulliger, Coord. Chem. Rev. 183, 101 (1999).

    Article  CAS  Google Scholar 

  21. P. G. Baranov, N. G. Romanov, V. A. Khramtsov, et al., Fiz. Tverd. Tela 42, 2166 (2000).

    Google Scholar 

  22. Yu. D. Perfil’ev, Ross. Khim. Zh. 42(3), 47 (1998).

    CAS  Google Scholar 

  23. Yu. M. Kiselev, Proceedings of V All-Russia Conference “Two-Electron Dynamics Mechanisms in Inorganic Materials,” Chernogolovka, 2002 (Izd. Inst. IPKhF RAN, Moscow, 2002), p. 12.

    Google Scholar 

  24. Yu. M. Kiselev and N. A. Dobrynina, Coordination Chemistry (Izd. tsentr “Akademiya”, Moscow, 2007) [in Russian].

    Google Scholar 

  25. M. Herren and H. U. Güdel, Inorg. Chem. 31, 3683 (1992).

    Article  CAS  Google Scholar 

  26. T. C. Brunold, H. U. Güdel, S. Kueck, and G. Huber, J. Lumin. 65, 293 (1996).

    Article  Google Scholar 

  27. M. Wermuth and H. U. Güdel, Chem. Phys. Lett. 281, 81 (1997).

    Article  CAS  Google Scholar 

  28. D. R. Gamelin, M. Wermuth, and H. U. Güdel, J. Lumin. 83/84, 405 (1999).

    Article  Google Scholar 

  29. G. Brauer and H. Kristen, Z. Anorg. Allg. Chem. 456, 41 (1979).

    Article  CAS  Google Scholar 

  30. G. Brauer and H. Kristen, Z. Anorg. Allg. Chem. 462, 35 (1980).

    Article  CAS  Google Scholar 

  31. A. J. Jacobson, B. C. Tofield, and B. E. F. Fender, Proceedings of X Rare-Earth Research Conference, Arizona, 1973, p. 13.

  32. J. E. Fiscus and H.-C. Loye, J. Alloys Comp. 306, 141 (2000).

    Article  CAS  Google Scholar 

  33. M. Faraggi and A. Feder, J. Chem. Phys. 56, 3294 (1972).

    Article  CAS  Google Scholar 

  34. D. T. Sviridov, R. K. Sviridova, and Yu. F. Smirnov, Optical Spectra of Transition Metal Ions in Crystals (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  35. V. N. Andreev, S. E. Nikitin, V. A. Klimov, et al., Fiz. Tverd. Tela 43, 755 (2001).

    Google Scholar 

  36. S. K. Dedushenko, I. B. Makhina, A. A. Mar’in, et al., Hyperfine Interact. 156, 417 (2004).

    Article  Google Scholar 

  37. E. K. Hulet, The Chemistry of the Actinide Elements, Ed. by J. J. Katz, G. T. Seaborg, and L. R. Morss (Chapman and Hall, London, 1986), p. 1071.

    Google Scholar 

  38. A. M. Fedoseev and A. B. Yusov, Dokl. Akad. Nauk SSSR 317, 916 (1991).

    CAS  Google Scholar 

  39. A. Yu. Tsivadze and G. V. Ionova, Modern Problems of Physical Chemistry (Izd. dom “Granitsa”, Moscow, 2005) [in Russian].

    Google Scholar 

  40. A. I. Aleksandrov, A. I. Prokof’ev, and N. N. Bubnov, Usp. Khim. 65, 519 (1996).

    CAS  Google Scholar 

  41. A. B. P. Lever, Inorganic Electronic Spectroscopy, (Elsevier, Amsterdam, 1968; Mir, Moscow, 1985).

    Google Scholar 

  42. S. K. Dedushenko and Yu. D. Perfil’ev, Izv. Akad. Nauk, Ser. Fiz. 65, 1039 (2001).

    CAS  Google Scholar 

  43. N. S. Kopelev, L. A. Kulikov, Yu. D. Perfil’ev, and Yu. M. Kiselev, Zh. Neorg. Khim. 40, 838 (1995).

    CAS  Google Scholar 

  44. N. S. Kopelev, L. A. Kulikov, and Yu. D. Perfiliev, Hyperfine Interact. 90, 377 (1994).

    Article  CAS  Google Scholar 

  45. Yu. D. Perfil’ev, L. A. Kulikov, and A. Yu. Yurchenko, Zh. Neorg. Khim. 45, 1708 (2000) [Russ. J. Inorg. Chem. 45 (10), 1568 (2000)].

    CAS  Google Scholar 

  46. Yu. D. Perfil’ev, Kh. E. Al’khatib, and L. A. Kulikov, Vestn. Mosk. Univ., Ser. Khim. 48, 139 (2007) [.

    Google Scholar 

  47. L. A. Kulikov, Yu. D. Perfil’ev, and A. Yu. Yurchenko, Izv. Akad. Nauk, Ser. Fiz. 63, 1466 (1999).

    CAS  Google Scholar 

  48. L. N. Kholodkovskaya, Yu. D. Perfil’ev, and Yu. M. Kiselev, Zh. Neorg. Khim. 42, 517 (1997) [Russ. J. Inorg. Chem. 42 (4), 447 (1997)].

    CAS  Google Scholar 

  49. Yu. D. Perfiliev, L. N. Kholodkovskaya, L. A. Kulikov, and Yu. M. Kiselev, Proceedings of International Conference on the Applications of the Moessbauer Effect (ICAME’95), Pisa, 1995, p. 04–C16.

  50. Yu. D. Perfiliev, L. N. Kholodkovskaya, Yu. M. Kiselev, and L. A. Kulikov, Ital. Phys. Soc. 50, 517 (1996).

    CAS  Google Scholar 

  51. S. K. Dedushenko, Yu. D. Perfiliev, Yu. M. Kiselev, et al., Proceedings of 14th International Symposium on Quadrupole Interactions, Pisa, 1997, p. 99.

  52. S. K. Dedushenko, Yu. D. Perfiliev, Yu. M. Kiselev, et al., Proceedings of International Conference on the Applications of the Moessbauer Effect (ICAME’97), Rio de Janeiro, 1997, MO. 4. P 03.

  53. S. K. Dedushenko, L. N. Kholodkovskaya, Yu. D. Perfiliev, et al., J. Alloys Comp. 262/263, 78 (1997).

    Article  Google Scholar 

  54. Yu. D. Perfiliev, A. M. Afanas’ev, and M. A. Chuev, Proceedings of International Conference on the Applications of the Moessbauer Effect, Oxford, 2001, Vol. 5/30, p. 75.

  55. L. A. Ponomarenko, S. K. Dedushenko, Yu. M. Kiselev, and N. A. Chumaevsky, Mendeleev Commun., 169 (1998).

  56. S. K. Dedushenko, L. A. Kulikov, and Yu. D. Perfil’ev, Radiokhimiya 40, 403 (1998).

    Google Scholar 

  57. P. Rolher, F. Wagner, and U. Zahn, Radiochim. Acta 11, 203 (1969).

    Google Scholar 

  58. V. F. Peretrukhin, E. A. Erin, V. I. Dzyubenko, et al., Dokl. Akad. Nauk SSSR 242, 1359 (1978).

    CAS  Google Scholar 

  59. V. N. Kosyakov, V. M. Erin, V. V. Vitutnev, and A. G. Rakov, Radiokhimiya 24, 551 (1982).

    CAS  Google Scholar 

  60. B. G. Ershov, Zh. Neorg. Khim. 47, 644 (2002) [Russ. J. Inorg. Chem. 47, 644 (2002)].

    CAS  Google Scholar 

  61. B. G. Ershov, N. L. Sukhov, A. A. Kiseleva, and G. V. Ionova, Izv. Akad. Nauk SSSR, Ser. Khim., 586 (1996).

  62. A. I. Aleksandrov, G. V. Ionova, and B. G. Ershov, Radiat. Phys. Chem. 13, 199 (1979).

    CAS  Google Scholar 

  63. B. G. Ershov, E. Janata, A. Henglein, and A. Fojtic, J. Phys. Chem. 97, 4589 (1993).

    Article  CAS  Google Scholar 

  64. B. G. Ershov, E. Janata, and A. Henglein, J. Phys. Chem. 97, 339 (1993).

    Article  CAS  Google Scholar 

  65. E. Janata, A. Henglein, and B. G. Ershov, J. Phys. Chem. 98, 1088 (1994).

    Article  Google Scholar 

  66. J. Ho, K. M. Ervin, and W. C. Lineberger, J. Chem. Phys. 93, 6087 (1990).

    Google Scholar 

  67. Yu. A. Koksharov, A. V. Avdey, V. D. Dolgenko, et al., Mendeleev Commun. 15, 77 (2005).

    Article  Google Scholar 

  68. L. K. Aminov, I. N. Kurkin, S. P. Kurzin, et al., Fiz. Tverd. Tela 49, 1990 (2007).

    Google Scholar 

  69. V. N. Bogomolov, D. A. Kurdyukov, L. S. Parfen’eva, et al., Fiz. Tverd. Tela 39, 392 (1997).

    CAS  Google Scholar 

  70. Sh. Sh. Bashkirov, A. A. Valiullin, L. D. Zaripova, et al., Elektronnyi Zh. “Issledovano v Rossii” http://zhurnal.ape.relarn.ru/articles/2004/025.pdf

  71. V. V. Eremenko, T. V. Sukhareva, and V. N. Samovarov, Fiz. Tverd. Tela 42, 797 (2000).

    Google Scholar 

  72. G. R. Asatryan, V. S. Vikhnin, T. I. Maksimova, et al., Fiz. Tverd. Tela 48, 1035 (2006).

    Google Scholar 

  73. S. J. Bingham, D. Suter, A. Schweiger, and A. J. Thompson, Chem. Phys. Lett. 266, 543 (1997).

    Article  CAS  Google Scholar 

  74. I. M. Batyaev, T. N. Vinogradova, and Yu. G. Kobezhikov, Pis’ma Zh. Tekhn. Fiz. 26, 69 (2000).

    Google Scholar 

  75. D. A. Pankratov, P. N. Komozin, and Yu. M. Kiselev, Zh. Neorg. Khim. 45, 1694 (2000) [Russ. J. Inorg. 45 (10), 1555 (2000)].

    CAS  Google Scholar 

  76. A. V. Avdei, A. Yu. Ermilov, A. V. Zaitsevskii, et al., Zh. Neorg. Khim. 51, 2038 (2006) [Russ. J. Inorg. Chem. 51 (12), 1220 (2006)].

    CAS  Google Scholar 

  77. V. D. Dolzhenko and Yu. M. Kiselev, Proceedings of XVIII International Chernyaev Conference on Chemistry, Analytics, and Technology of Platinum Metals, Moscow, 2006, Part 1, p. 163.

  78. Yu. M. Kiselev, Zh. Neorg. Khim. 40, 817 (1995).

    CAS  Google Scholar 

  79. R. L. Firor and K. Seff, J. Am. Chem. Soc. 100, 976 (1978).

    Article  CAS  Google Scholar 

  80. S. L. Suib, R. P. Zerger, G. D. Stucky, et al., Inorg. Chem. 19, 1858 (1980).

    Article  CAS  Google Scholar 

  81. V. D. Dolzhenko, A. Yu. Ermilov, A. V. Avdei, and Yu. M. Kiselev, Zh. Neorg. Khim. 50, 458 (2005) [Russ. J. Inorg. Chem. 50 (3), 458 (2005)].

    Google Scholar 

  82. N. S. Nesterenko, A. V. Avdey, and A. Yu. Ermilov, Int. J. Quantum Chem. 106, 2281 (2006).

    Article  CAS  Google Scholar 

  83. F. Rittner, A. Seidel, and B. Boddenberg, Micropor. Mesopor. Mater. 24, 127 (1998).

    Article  CAS  Google Scholar 

  84. T. I. Maksimova, Kh. Fogel’zang, Kh. Shtol’ts, and V. Osten, Fiz. Tverd. Tela 39, 1567 (1997).

    CAS  Google Scholar 

  85. V. D. Dolgenko, Yu. A. Koksharov, and Yu. M. Kiselev, Mendeleev Commun. 14, 56 (2004).

    Article  Google Scholar 

  86. V. D. Dolgenko, Yu. A. Koksharov, and Yu. M. Kiselev, Mendeleev Commun. 14, 58 (2004).

    Article  Google Scholar 

  87. M. V. Nikonov, I. G. Tananaev, and Yu. M. Kiselev, Proceedings of XVIII International Chernyaev Conference on Chemistry, Analytics, and Technology of Platinum Metals, Moscow, 2006, Part 1, p. 188.

  88. M. V. Nikonov, I. G. Tananaev, and Yu. M. Kiselev, Proceedings of V Russian Conference on Radiochemistry, Dubna, 2006, p. 139.

  89. Yu. M. Kiselev, Zh. Neorg. Khim. 48, 2050 (2003) [Russ. J. Inorg. Chem. 48 (12), 1892 (2003)].

    CAS  Google Scholar 

  90. V. V. Kharitonov and V. N. Gerasimov, Fiz. Tverd. Tela 40, 1610 (1998).

    CAS  Google Scholar 

  91. Yu. M. Kiselev, Zh. Neorg. Khim. 39, 1266 (1994).

    CAS  Google Scholar 

  92. G. Demazeau, S. Darracq, and J. H. Choy, High Pres. Res. 12, 323 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Kiselev.

Additional information

Original Russian Text © Yu.M. Kiselev, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 3, pp. 472–483.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiselev, Y.M. On the matrix stabilization of unstable oxidation states: 1. Experimental foundations. Russ. J. Inorg. Chem. 54, 425–435 (2009). https://doi.org/10.1134/S0036023609030164

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023609030164

Keywords

Navigation