Russian Journal of Inorganic Chemistry

, Volume 54, Issue 2, pp 332–339 | Cite as

Thermodynamic characteristics of complex formation in the nickel(II) ion-β-alanine systems in aqueous solution

  • L. A. Kochergina
  • O. V. Platonycheva
  • O. M. Drobilova
  • V. V. Chernikov
Physical Chemistry of Solutions

Abstract

Heats of reactions between a nickel(II) ion and β-alanine were measured calorimetrically at 288.15, 298.15, and 308.15 K and ionic strengths of 0.5, 1.0, and 1.5 (KNO3). Thermochemical data were processed with account for stepwise equilibria; attendant protolytic processes were taken into account together with complexing reactions. Extrapolation to the zeroth ionic strength with the use of a one-parameter equation gave standard thermodynamic characteristics of complex formation in the system. The influence of the supporting electrolyte and temperature on the heats of complex formation reactions was considered. Standard enthalpies of formation were calculated for NiAla+, NiAla2, and NiAla3 species.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. P. Vasil’ev, L. A. Kochergina, O. N. Platonycheva, et al., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 47(10), 34 (2004).Google Scholar
  2. 2.
    H. Irving and Rossotti, J. Chem. Soc., 2910 (1954).Google Scholar
  3. 3.
    V. Sharma, N. Mathir, and R. Kilkarpi, Indian J. Chem. 46, 475 (1965).Google Scholar
  4. 4.
    D. Leissipg and E. Nappa, J. Am. Shem. Soc. 88, 693 (1966).CrossRefGoogle Scholar
  5. 5.
    V. Boyd and N. Brappap, et al., J. Chem. Eng. Data 12, 601 (1967).CrossRefGoogle Scholar
  6. 6.
    M. Chidambarap and R. Bhattacharya, Indian J. Chem. 47, 881 (1970).Google Scholar
  7. 7.
    R. Dapiele, G. Ostacoli, and R. Caldoro, Ann. Chim. (Rome) 66, 127 (1976).Google Scholar
  8. 8.
    E. Bottari and R. Jasiopowska, Ann. Chim. (Rome) 69, 425 (1979).Google Scholar
  9. 9.
    N. Latosh, M. Ermakova, and Shikhova, Zh. Obsch. Khim. 48, 191 (1978).Google Scholar
  10. 10.
    M. Vyas, Singh, et al. Ann. Chim. (Rome) 75, 377 (1985).Google Scholar
  11. 11.
    R. Gaizer, Gondos, and L. Gera, Polyhedron 5, 1149 (1986).CrossRefGoogle Scholar
  12. 12.
    I. Sovago, T. Kiss, and A. Gergely, Pure Appl. Chem. 65, 1029 (1993).CrossRefGoogle Scholar
  13. 13.
    V. P. Vasil’ev, Thermodynamic Properties of Electrolyte Solutions (Vysshaya Shkola, Moscow, 1982) [in Russian].Google Scholar
  14. 14.
    W. Stack and N. Skinner, Trans. Faraday, Soc. 63, 1136 (1967).CrossRefGoogle Scholar
  15. 15.
    P. P. Korostelev, Solution Preparation for Chemical Analyses (Akad. Nauk SSSR, Moscow, 1962) [in Russian].Google Scholar
  16. 16.
    V. P. Vasil’ev, L. A. Kochergina, and R. P. Morozova, Analytical Chemistry. Laboratory Manual (Drofa, Moscow, 2004) [in Russian].Google Scholar
  17. 17.
    L. A. Kochergina, O. M. Drobilova, and S. S. Drobilov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 51(1), 33 (2008).Google Scholar
  18. 18.
    V. P. Vasil’ev, L. A. Kochergina, and V. Yu. Garavin, Zh. Obshch. Khim. 62(1), 213 (1992).Google Scholar
  19. 19.
    V. A. Nazarenko, V. I. Antonovich, and E. M. Nevskaya, Hydrolysis of Metal Ions in Dilute Solutions (Atomizdat, Moscow, 1979) [in Russian].Google Scholar
  20. 20.
    V. P. Vasil’ev and L. D. Shekhanova, Zh. Neorg. Khim. 19(11), 2969 (1974).Google Scholar
  21. 21.
    V. P. Vasil’ev, Zh. Neorg. Khim. 30(1), 3 (1985).Google Scholar
  22. 22.
    The Thermal Constants of Compounds. Handbook, Ed. by V. P. Glushko, et al. (VINITI, Moscow) [in Russian].Google Scholar
  23. 23.
    O. Yu. Zelenin, L. A. Kochergina, and O. V. Platonycheva, Zh. Fiz. Khim. 78 (2004).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • L. A. Kochergina
    • 1
  • O. V. Platonycheva
    • 1
  • O. M. Drobilova
    • 1
  • V. V. Chernikov
    • 1
  1. 1.Ivanovo State University of Chemical TechnologyIvanovoRussia

Personalised recommendations