Skip to main content
Log in

Thermodynamic properties of aqueous solutions of tetraalkylammonium salts: Dependence of the hydrophobic hydration effect on the cation size

  • Physical Chemistry of Solutions
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The heats of solution of tetrahexylammonium and tetraheptylammonium bromides in water were measured at 318.15 and 328.15 K. The standard enthalpies and specific heats of solution and the temperature changes in the free energy and entropy of solution were calculated. A comparison of the thermodynamic properties of solutions for the homologous series of tetraalkylammonium salts demonstrated that the enthalpic, entropic, and specific heat characteristics of solution are positive and increase almost linearly up to tetrapentylammonium bromide. On passing to larger homologues, these parameters decrease, suggesting that the hydrophobic hydration effect is substantially weaker in solutions of tetraalkylammonium salts with larger cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kauzmann, Adv. Prot. Chem. 14, 1 (1959).

    Article  CAS  Google Scholar 

  2. Yu. M. Kessler and A. L. Zaitsev, Solvophobic Effects: Theory, Experiment, and Practice (Khimiya, Leningrad, 1989) [in Russian].

    Google Scholar 

  3. L. R. Pratt, Ann. Rev. Phys. Chem. 52, 1 (2002).

    Google Scholar 

  4. A. K. Lyashchenko, in Theoretical and Applied Inorganic Chemestry (Nauka, Moscow, 1999), p. 60 [in Russian].

    Google Scholar 

  5. K. Lum, D. Chandler, and J. D. Weeks, J. Phys. Chem. B 103, 4570 (1999).

    Article  CAS  Google Scholar 

  6. D. M. Huang, P. L. Geissler, and D. Chandler, J. Phys. Chem. B 105, 6704 (2001).

    Article  CAS  Google Scholar 

  7. D. M. Huang and D. Chandler, J. Phys. Chem. B 106, 2047 (2002).

    Article  CAS  Google Scholar 

  8. D. Chandler, Nature 445, 831 (2007).

    Article  CAS  Google Scholar 

  9. J. Z. Tuner and A. K. Soper, J. Chem. Phys. 101, 6116 (1994).

    Article  Google Scholar 

  10. N. G. Polydorou, J. D. Wicks, and J. Z. Tuner, J. Chem. Phys. 107(1), 197 (1997).

    Article  CAS  Google Scholar 

  11. B. Madan and K. Sharp, Biophys. Chem. 78, 33 (1999).

    Article  CAS  Google Scholar 

  12. A. V. Kustov and V. P. Korolev, Zh. Fiz. Khim. 80(1), 64 (2006) [Russ. J. Phys. Chem. 80 (1), 56 (2006)].

    Google Scholar 

  13. O. Ya. Samoilov, Yu. V. Ergin, and L. I. Kostrova, Zh. Strukt. Khim. 17(4), 646 (1976).

    CAS  Google Scholar 

  14. H. L. Friedman and C. V. Krishnan, J. Phys. Chem. 75, 3606 (1971).

    Article  Google Scholar 

  15. H. Nakayama, H. Kuwata, N. Yamamoto, et al., Bull. Chem. Soc. Jpn. 62, 985 (1989).

    Article  CAS  Google Scholar 

  16. A. V. Kustov, A. A. Emel’yanov, A. F. Syshchenko, et al., Zh. Fiz. Khim. 80(9), 1724 (2006) [Russ. J. Phys. Chem. 80 (9), 1532 (2006)].

    Google Scholar 

  17. S. N. Solov’ev, N. M. Privalova, and A. F. Vorob’ev, Available from VINITI, No. 2101-76 (1976).

  18. N. G. Manin, T. N. Lapshina, and V. P. Korolev, Zh. Fiz. Khim. 71(8), 1351 (1997) [Russ. J. Phys. Chem. 71 (8), 1207 (1997)].

    CAS  Google Scholar 

  19. N. G. Manin, I. B. Kurbanov, and V. P. Korolev, Zh. Fiz. Khim. 73(3), 475 (1999) [Russ. J. Phys. Chem. 73 (3), 400 (1999)].

    Google Scholar 

  20. M. Castagnolo, A. Sacco, and A. de Ciglio, J. Chem. Soc., Faraday Trans. 80, 2669 (1984).

    Article  CAS  Google Scholar 

  21. M. H. Abraham and Y. Marcus, J. Chem. Soc., Faraday Trans. 1 82, 3255 (1986).

    Article  CAS  Google Scholar 

  22. Y. Nagano, M. Sakiyama, T. Fujiwara, and Y. Kondo, J. Phys. Chem. 92, 5823 (1988).

    Article  CAS  Google Scholar 

  23. Y. Nagano, H. Mizuno, M. Sakiyama, et al., J. Phys. Chem. 95, 2536 (1991).

    Article  CAS  Google Scholar 

  24. A. M. Kolker and G. A. Krestov, Contemporary Issues of Solution Chemistry, Ed. by B. D. Berezin (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  25. H. S. Frank and M. W. Evans, J. Chem. Phys. 13(507) (1945).

  26. S. Cabani, P. Gianni, V. Mollica, and L. Lepori, J. Solution Chem 10, 563 (1981).

    Article  CAS  Google Scholar 

  27. A. Ben-Naim and Y. Marcus, J. Chem. Phys. 81, 2016 (1984).

    Article  CAS  Google Scholar 

  28. F. Franks, Water: A Comprehensive Treatise. Ch. 1 (Plenum, New York, 1975), Vol. 4, p. 1.

    Google Scholar 

  29. K. R. Gallaher and K. A. Sharp, J. Am. Chem. Soc. 125, 9853 (2003).

    Article  Google Scholar 

  30. V. S. Dynyashev, L. V. Dynyashev, and A. K. Lyaschenko, Abstr. XVI International Conf. on Chem. Thermodyn. Susdal, 2007, p. 5/S–617.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kustov.

Additional information

Original Russian Text © A.V. Kustov, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 2, pp. 368–373.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kustov, A.V. Thermodynamic properties of aqueous solutions of tetraalkylammonium salts: Dependence of the hydrophobic hydration effect on the cation size. Russ. J. Inorg. Chem. 54, 323–328 (2009). https://doi.org/10.1134/S0036023609020284

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023609020284

Keywords

Navigation