Skip to main content

Quantum mechanic study of hydrogen chemisorptions on nanocluster vanadium surface


In the present investigation, we have employed the adsorption of H-H at the bcc site of V (100) with use of an ab initio method. The most stable adsorption configuration has been found on transition metal surface with chemisorption energies. Although similar in type and energy, the adsorption on the V (100) surface shows a markedly different optimized geometry. The calculations have performed for small clusters representing three adjacent metal sites. Upon the adsorption, the molecule forms strong covalent bonds with the surface, whereupon the structure of nearby single H-H and H-V bonds change at various positions of top, bridge, and center sites in this model. We have predicted the existence of a new ordered structure comparable in stability to one proposed previously. We confirm the preference of the top approach of adsorption configuration suggested by experiment. Adsorption of H2 from the top site goes through the same from the bridge and center sites, but the former has a higher energy.

This is a preview of subscription content, access via your institution.


  1. G. C. Wang and Y. H. Zhou, J. Chem. Phys. 122, 044707 (2005).

    Google Scholar 

  2. D. E. Jiang and E. A. Carter, Surf. Sci. 547, 85, (2003).

    Article  CAS  Google Scholar 

  3. G. A. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994).

    Google Scholar 

  4. R. B. Anderson, The Fischer-Tropsch Synthesis (Academic Press, Orlando, Fla, 1984).

    Google Scholar 

  5. W. Zhong, Y. Cai, and D. Tomanek, Nature 362, 435 (1993).

    Article  CAS  Google Scholar 

  6. J.-S. Wang, Eng. Fract. Mech. 68, 647 (2001).

    Article  Google Scholar 

  7. A. I. Livshits, F. Sube, M. N. Solovyev, et al., J. Appl. Phys. 84, 2558 (1998).

    Article  CAS  Google Scholar 

  8. K. Hermann, A. Chakrabarti, and R. Druzinic, M. Witko, Physica Status Solidi (a) 173, 195 (1999).

    Article  CAS  Google Scholar 

  9. R. Koller, W. Bergermayer, G. Kresse, et al., Surf. Sci. 11, 480 (2001).

    Google Scholar 

  10. M. A. J. Quinn, J. Schmid, R. Redinger, et al., Phys. Rev. Lett. 86, 2396 (2001).

    Article  Google Scholar 

  11. D. L. Smith, M. C. Billone, and K. Natesan, Int. J. Refract. Met. Hard Mater. 18, 213 (2000).

    Article  CAS  Google Scholar 

  12. A. I. Livshits, M. E. Notkin, and A. A. Samartsev, J. Nucl. Mater. 170, 79 (1990).

    Article  CAS  Google Scholar 

  13. R. A. van Santen and M. Neurock, Catal. Rev. Sci. Eng. 37, 557 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. Monajjemi.

Additional information

Original Russian Text © M. Monajjemi, M.T. Baei, F. Mollaamin, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 9, pp. 1529–1536.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Monajjemi, M., Baei, M.T. & Mollaamin, F. Quantum mechanic study of hydrogen chemisorptions on nanocluster vanadium surface. Russ. J. Inorg. Chem. 53, 1430–1437 (2008).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • Vanadium
  • Chemisorption
  • Center Site
  • Bridge Site
  • Hydrogen Chemisorption