Skip to main content
Log in

Design and Decoding of Polar Codes with Large Kernels: A Survey

  • CODING THEORY
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

We present techniques for the construction of polar codes with large kernels and their decoding. A crucial problem in the implementation of the successive cancellation decoding algorithm and its derivatives is kernel processing, i.e., fast evaluation of the log-likelihood ratios for kernel input symbols. We discuss window and recursive trellis processing methods. We consider techniques for evaluation of the reliability of bit subchannels and for obtaining codes with improved distance properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Notes

  1. Here we omit the normalization factors, since they do not affect the decoding.

  2. For symmetric channels, it is sufficient to consider \(u_0^{n-1}=0\).

References

  1. Arıkan, E., Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels, IEEE Trans. Inform. Theory, 2009, vol. 55, no. 7, pp. 3051–3073. https://doi.org/10.1109/TIT.2009.2021379

    Article  MathSciNet  MATH  Google Scholar 

  2. Korada, S.B., Şaşoğlu, E., and Urbanke, R., Polar Codes: Characterization of Exponent, Bounds, and Constructions, IEEE Trans. Inform. Theory, 2010, vol. 56, no. 12, pp. 6253–6264. https://doi.org/10.1109/TIT.2010.2080990

    Article  MathSciNet  MATH  Google Scholar 

  3. Fazeli, A., Hassani, H., Mondelli, M., and Vardy, A., Binary Linear Codes with Optimal Scaling: Polar Codes with Large Kernels, IEEE Trans. Inform. Theory, 2021, vol. 67, no. 9, pp. 5693–5710. https://doi.org/10.1109/TIT.2020.3038806

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, H.-P. and Duursma, I.M., Polar Codes’ Simplicity, Random Codes’ Durability, IEEE Trans. Inform. Theory, 2021, vol. 67, no. 3, pp. 1478–1508. https://doi.org/10.1109/TIT.2020.3041570

    Article  MathSciNet  MATH  Google Scholar 

  5. Guruswami, V., Riazanov, A., and Ye, M., Arıkan Meets Shannon: Polar Codes with Near-Optimal Convergence to Channel Capacity, IEEE Trans. Inform. Theory, 2022, vol. 68, no. 5, pp. 2877–2919. https://doi.org/10.1109/TIT.2022.3146786

    Article  MathSciNet  MATH  Google Scholar 

  6. Presman, N., Shapira, O., and Litsyn, S., Mixed-Kernels Constructions of Polar Codes, IEEE J. Select. Areas Commun., 2016, vol. 34, no. 2, pp. 239–253. https://doi.org/10.1109/JSAC.2015.2504278

    Article  Google Scholar 

  7. Bioglio, V., Gabry, F., Land, I., and Belfiore, J.-C., Multi-Kernel Polar Codes: Concept and Design Principles, IEEE Trans. Commun., 2020, vol. 68, no. 9, pp. 5350–5362. https://doi.org/10.1109/TCOMM.2020.3006212

    Article  Google Scholar 

  8. Trifonov, P., Binary Successive Cancellation Decoding of Polar Codes with Reed–Solomon Kernel, in Proc. 2014 IEEE Int. Symp. on Information Theory (ISIT’2014), Honolulu, HI, USA, June 29 – July 4, 2014, pp. 2972–2976. https://doi.org/10.1109/ISIT.2014.6875379

  9. Bioglio V., and Land, I., On the Marginalization of Polarizing Kernels, in Proc. 2018 IEEE 10th Int. Symp. on Turbo Codes & Iterative Information Processing (ISTC’2018), Hong Kong, China, Dec. 3–7, 2018, pp. 1–5. https://doi.org/10.1109/ISTC.2018.8625378

  10. Tal, I. and Vardy, A., List Decoding of Polar Codes, IEEE Trans. Inform. Theory, 2015, vol. 61, no. 5, pp. 2213–2226. https://doi.org/10.1109/TIT.2015.2410251

    Article  MathSciNet  MATH  Google Scholar 

  11. Miloslavskaya, V. and Trifonov, P., Sequential Decoding of Polar Codes, IEEE Commun. Lett., 2014, vol. 18, no. 7, pp. 1127–1130. https://doi.org/10.1109/LCOMM.2014.2323237

    Article  Google Scholar 

  12. Chandesris, L., Savin, V., and Declercq, D., Dynamic-SCFlip Decoding of Polar Codes, IEEE Trans. Commun., 2018, vol. 66, no. 6, pp. 2333–2345. https://doi.org/10.1109/TCOMM.2018.2793887

    Article  Google Scholar 

  13. Trifonov, P., A Score Function for Sequential Decoding of Polar Codes, in Proc. 2018 IEEE Int. Symp. on Information Theory (ISIT’2018), Vail, CO, USA, June 17–22, 2018, pp. 1470–1474. https://doi.org/10.1109/ISIT.2018.8437559

  14. Polyanskiy, Y., Poor, H.V., and Verdú, S., Channel Coding Rate in the Finite Blocklength Regime, IEEE Trans. Inform. Theory, 2010, vol. 56, no. 5, pp. 2307–2359. https://doi.org/10.1109/TIT.2010.2043769

    Article  MathSciNet  MATH  Google Scholar 

  15. Mondelli, M., Hassani, S.H., and Urbanke, R.L., Unified Scaling of Polar Codes: Error Exponent, Scaling Exponent, Moderate Deviations, and Error Floors, IEEE Trans. Inform. Theory, 2016, vol. 62, no. 12, pp. 6698–6712. https://doi.org/10.1109/TIT.2016.2616117

    Article  MathSciNet  MATH  Google Scholar 

  16. Fazeli, A. and Vardy, A., On the Scaling Exponent of Binary Polarization Kernels, in Proc. 52nd Annu. Allerton Conf. on Communication, Control, and Computing (Allerton’2014), Monticello, IL, USA, Sept. 30–Oct. 3, 2014, pp. 797–804. https://doi.org/10.1109/ALLERTON.2014.7028536

  17. Yao, H., Fazeli, A., and Vardy, A., Explicit Polar Codes with Small Scaling Exponent, in Proc. 2019 IEEE Int. Symp. on Information Theory (ISIT’2019), Paris, France, July 7–12, 2019, pp. 1757–1761. https://doi.org/10.1109/ISIT.2019.8849741

  18. Mondelli, M., Hassani, H., and Urbanke, R., How to Achieve the Capacity of Asymmetric Channels. IEEE Trans. Inform. Theory. 2018, vol. 64, no. 5, pp. 3371–3393. https://doi.org/10.1109/TIT.2018.2789885

    Article  MathSciNet  MATH  Google Scholar 

  19. Park, W. and Barg, A., Polar Codes for \(q\)-ary Channels, \(q=2^r\), IEEE Trans. Inform. Theory, 2013, vol. 59, no. 2, pp. 955–969. https://doi.org/10.1109/TIT.2012.2219035

    Article  MathSciNet  MATH  Google Scholar 

  20. Şaşoğlu, E., Telatar, I.E., and Arıkan, E., Polarization for Arbitrary Discrete Memoryless Channels, in Proc. IEEE 2009 Information Theory Workshop (ITW’2009), Taormina, Italy, Oct. 11–16, 2009, pp. 144–148. https://doi.org/10.1109/ITW.2009.5351487

  21. Mori, R. and Tanaka, T., Source and Channel Polarization over Finite Fields and Reed–Solomon Matrices, IEEE Trans. Inform. Theory, 2014, vol. 60, no. 5, pp. 2720–2736. https://doi.org/10.1109/TIT.2014.2312181

    Article  MathSciNet  MATH  Google Scholar 

  22. Presman, N., Shapira, O., Litsyn, S., Etzion, T., and Vardy, A., Binary Polarization Kernels from Code Decompositions, IEEE Trans. Inform. Theory, 2015, vol. 61, no. 5, pp. 2227–2239. https://doi.org/10.1109/TIT.2015.2409257

    Article  MathSciNet  MATH  Google Scholar 

  23. Trofimiuk, G. and Trifonov, P., Efficient Decoding of Polar Codes with Some 16 × 16 Kernels, in Proc. IEEE 2018 Information Theory Workshop (ITW’2018), Guangzhou, China, Nov. 25–29, 2018, pp. 11–15. https://doi.org/10.1109/ITW.2018.8613307

  24. Trofimiuk, G., A Search Method for Large Polarization Kernels, in Proc. 2021 IEEE Int. Symp. on Information Theory (ISIT’2021), Melbourne, Australia, July 12–20, 2021, pp. 2084–2089. https://doi.org/10.1109/ISIT45174.2021.9517729

  25. Lin, H.-P., Lin, S., and Abdel-Ghaffar, K.A.S., Linear and Nonlinear Binary Kernels of Polar Codes of Small Dimensions with Maximum Exponents, IEEE Trans. Inform. Theory, 2015, vol. 61, no. 10, pp. 5253–5270. https://doi.org/10.1109/TIT.2015.2469298

    Article  MathSciNet  MATH  Google Scholar 

  26. Moskovskaya, E. and Trifonov, P., Design of BCH Polarization Kernels with Reduced Processing Complexity, IEEE Commun. Lett., 2020, vol. 24, no. 7, pp. 1383–1386. https://doi.org/10.1109/LCOMM.2020.2984382

    Article  Google Scholar 

  27. Abbasi, F. and Viterbo, E., Large Kernel Polar Codes with Efficient Window Decoding, in IEEE Trans. Veh. Technol., 2020, vol. 69, no. 11, pp. 14031–14036. https://doi.org/10.1109/TVT.2020.3029305

    Article  Google Scholar 

  28. Trofimiuk, G., Shortened Polarization Kernels, in Proc. 2021 IEEE Globecom Workshops (GC Wkshps), Madrid, Spain, Dec. 7–11, 2021, pp. 1–6. https://doi.org/10.1109/GCWkshps52748.2021.9681982

  29. Miloslavskaya, V. and Trifonov, P., Sequential Decoding of Polar Codes with Arbitrary Binary Kernel, in Proc. IEEE 2014 Information Theory Workshop (ITW’2014), Hobart, TAS, Australia, Nov. 2–5, 2014, pp. 376–380. https://doi.org/10.1109/ITW.2014.6970857

  30. Fujiwara, T., Yamamoto, H., Kasami, T., and Lin, S., A Trellis-Based Recursive Maximum-Likelihood Decoding Algorithm for Binary Linear Block Codes, in IEEE Trans. Inform. Theory, 1998, vol. 44, no. 2, pp. 714–729. https://doi.org/10.1109/18.661515

    Article  MathSciNet  MATH  Google Scholar 

  31. Trifonov, P., Trellis-Based Decoding Techniques for Polar Codes with Large Kernels, in Proc. IEEE 2019 Information Theory Workshop (ITW’2019), Visby, Sweden, Aug. 25–28, 2019, pp. 249–253. https://doi.org/10.1109/ITW44776.2019.8989386

  32. Trifonov, P. and Karakchieva, L., Recursive Processing Algorithm for Low Complexity Decoding of Polar Codes with Large Kernels, IEEE Trans. Commun., Early access June 2023, https://doi.org/10.1109/TCOMM.2023.3285773

  33. Balatsoukas-Stimming, A., Bastani Parizi, M., and Burg, A., LLR-Based Successive Cancellation List Decoding of Polar Codes, in IEEE Trans. Signal Process., 2015, vol. 63, no. 19, pp. 5165–5179. https://doi.org/10.1109/TSP.2015.2439211

    Article  MathSciNet  MATH  Google Scholar 

  34. Trofimiuk, G., Iakuba, N., Rets, S., Ivanov, K., and Trifonov, P., Fast Block Sequential Decoding of Polar Codes, in IEEE Trans. Veh. Technol., 2020, vol. 69, no. 10, pp. 10988–10999. https://doi.org/10.1109/TVT.2020.3006369

    Article  Google Scholar 

  35. Trofimiuk, G. and Trifonov, P., Window Processing of Binary Polarization Kernels, IEEE Trans. Commun., 2021, vol. 69, no. 7, pp. 4294–4305. https://doi.org/10.1109/TCOMM.2021.3072730

    Article  Google Scholar 

  36. Trofimiuk, G. and Trifonov, P., Construction of Binary Polarization Kernels for Low Complexity Window Processing, in Proc. IEEE 2019 Information Theory Workshop (ITW’2019), Visby, Sweden, Aug. 25–28, 2019, pp. 115–119. https://doi.org/10.1109/ITW44776.2019.8989344

  37. Valembois, A. and Fossorier, M., Box and Match Techniques Applied to Soft-Decision Decoding, IEEE Trans. Inform. Theory, 2004, vol. 50, no. 5, pp. 796–810. https://doi.org/10.1109/TIT.2004.826644

    Article  MathSciNet  MATH  Google Scholar 

  38. Gupta, B., Yao, H., Fazeli, A., and Vardy, A., Polar List Decoding for Large Polarization Kernels, in Proc. 2021 IEEE Globecom Workshops (GC Wkshps), Madrid, Spain, Dec. 7–11, 2021, pp. 1–6. https://doi.org/10.1109/GCWkshps52748.2021.9681935

  39. Trifonov, P., Efficient Design and Decoding of Polar Codes, IEEE Trans. Commun., 2012, vol. 60, no. 11, pp. 3221–3227. https://doi.org/10.1109/TCOMM.2012.081512.110872

    Article  Google Scholar 

  40. Tal, I. and Vardy, A., How to Construct Polar Codes, IEEE Trans. Inform. Theory, 2013, vol. 59, no. 10, pp. 6562–6582. https://doi.org/10.1109/TIT.2013.2272694

    Article  MathSciNet  MATH  Google Scholar 

  41. Mori, R. and Tanaka, T., Performance of Polar Codes with the Construction Using Density Evolution, IEEE Commun. Lett., 2009, vol. 13, no. 7, pp. 519–521. https://doi.org/10.1109/LCOMM.2009.090428

    Article  Google Scholar 

  42. Kern, D., Vorköper, S., and Kühn, V., A New Code Construction for Polar Codes Using Min-Sum Density, in Proc. 2014 8th Int. Symp. on Turbo Codes and Iterative Information Processing (ISTC’2014), Bremen, Germany, Aug. 18–22, 2014, pp. 228–232. https://doi.org/10.1109/ISTC.2014.6955119

  43. Miloslavskaya, V. and Trifonov, P., Design of Binary Polar Codes with Arbitrary Kernels, in Proc. 2012 IEEE Information Theory Workshop (ITW’2012), Lausanne, Switzerland, Sept. 3–7, 2012, pp. 119–123. https://doi.org/10.1109/ITW.2012.6404639

  44. Richardson, T. and Urbanke, R., Modern Coding Theory, Cambridge, UK: Cambridge Univ. Press, 2008.

    Book  MATH  Google Scholar 

  45. Trifonov, P., On Construction of Polar Subcodes with Large Kernels, in Proc. 2019 IEEE Int. Symp. on Information Theory (ISIT’2019), Paris, France, July 7–12, 2019, pp. 1932–1936. https://doi.org/10.1109/ISIT.2019.8849672

  46. Karakchieva, L. and Trifonov, P., An Approximate Method for Construction of Polar Codes with Kernels over \(\mathbb{F}_2^t\), IEEE Commun. Lett., 2020, vol. 24, no. 9, pp. 1857–1860. https://doi.org/10.1109/LCOMM.2020.2995257

    Article  Google Scholar 

  47. Trifonov, P. and Miloslavskaya, V., Polar Subcodes, IEEE J. Select. Areas Commun., 2016, vol. 34, no. 2, pp. 254–266. https://doi.org/10.1109/JSAC.2015.2504269

    Article  Google Scholar 

  48. Trifonov, P., Randomized Polar Subcodes with Optimized Error Coefficient, IEEE Trans. Commun., 2020, vol. 68, no. 11, pp. 6714–6722. https://doi.org/10.1109/TCOMM.2020.3018781

    Article  Google Scholar 

  49. Trifonov, P. and Trofimiuk, G., A Randomized Construction of Polar Subcodes, in Proc. 2017 IEEE Int. Symp. on Information Theory (ISIT’2017), Aachen, Germany, June 25–30, 2017, pp. 1863–1867. https://doi.org/10.1109/ISIT.2017.8006852

  50. Miloslavskaya, V., Vucetic, B., Li, Y., Park, G., and Park, O.-S., Recursive Design of Precoded Polar Codes For SCL Decoding, IEEE Trans. Commun., 2021, vol. 69, no. 12, pp. 7945–7959. https://doi.org/10.1109/TCOMM.2021.3111625

    Article  Google Scholar 

  51. Trifonov, P., Recursive Trellis Processing of Large Polarization Kernels, in Proc. 2021 IEEE Int. Symp. on Information Theory (ISIT’2021), Melbourne, Australia, July 12–20, 2021, pp. 2090–2095. https://doi.org/10.1109/ISIT45174.2021.9517783

Download references

Funding

The research was carried out at the expense of the Russian Science Foundation, project no. 22-11-00208.

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Peredachi Informatsii, 2023, Vol. 59, No. 1, pp. 25–45. https://doi.org/10.31857/S0555292323010035

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trifonov, P.V. Design and Decoding of Polar Codes with Large Kernels: A Survey. Probl Inf Transm 59, 22–40 (2023). https://doi.org/10.1134/S0032946023010039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946023010039

Keywords

Navigation