Skip to main content
Log in

Theoretical and Experimental Upper and Lower Bounds on the Efficiency of Convolutional Codes in a Binary Symmetric Channel

  • CODING THEORY
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

We propose a new approach to the analytical estimation of the error burst probability, the probability of erroneous decoding, and the probability of error per bit for convolutional codes with Viterbi decoding in a binary symmetric channel (BSC). Upper and lower estimates of the probability of error per bit and of the erroneous decoding probability are based on active distances and the distance spectrum of active distances for a convolutional code. The estimates are derived for rate \({1}/{2}\) convolutional codes, but they can also be generalized to any convolutional code with rate \({1}/{n}\). Calculation of the estimates described here has linear time complexity in the error burst minimal length if code distance properties are known. The computational complexity does not depend on the crossover probability of a BSC. Simulation results show that the considered estimates are rather tight, especially for small crossover probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Elias, P., Coding for Noisy Channels, IRE Conv. Rec., 1955, vol. 4, pp. 37⁠–⁠46. Reprinted in Key Papers in the Development of Information Theory, Slepian, D., Ed., New York: IEEE Press, 1974, pp. 102⁠–⁠111.

    Google Scholar 

  2. Yang, C., Zhan, M., Deng, Y., Wang, M., Luo, X.H., and Zeng, J., Error-Correcting Performance Comparison for Polar Codes, LDPC Codes and Convolutional Codes in High-Performance Wireless, in Proc. 6th Int. Conf. on Information, Cybernetics, and Computational Social Systems (ICCSS’2019), Chongqing, China, Sept. 27⁠–⁠30, 2019, P. 258⁠–⁠262. https://doi.org/10.1109/ICCSS48103.2019.9115442

    Google Scholar 

  3. Deng, Y., Zhan, M., Wang, M., Yang, C., Luo, X., Zeng, J., and Guo, J., Comparing Decoding Performance of LDPC Codes and Convolutional Codes for Short Packet Transmission, in Proc. IEEE 17th Int. Conf. on Industrial Informatics (INDIN’2019), Helsinki, Finland, July 22⁠–⁠25, 2019,vol. 1, pp. 1751⁠–⁠1755. https://doi.org/10.1109/INDIN41052.2019.8972062

    Google Scholar 

  4. Tahir, B., Schwarz, S., and Rupp, M., BER Comparison between Convolutional, Turbo, LDPC, and Polar Codes, in Proc. 24th Int. Conf. on Telecommunications (ICT’2017), Limassol, Cyprus, May 3⁠–⁠5, 2017, pp. 1⁠–⁠7. https://doi.org/10.1109/ICT.2017.7998249

    Google Scholar 

  5. Rurik, W. and Mazumdar, A., Hamming Codes as Error-Reducing Codes, in Proc. 2016 IEEE Information Theory Workshop (ITW’2006), Cambridge, UK, Sept. 11⁠–⁠14, 2016, pp. 404⁠–⁠408. https://doi.org/10.1109/ITW.2016.7606865

    Chapter  Google Scholar 

  6. Liu, K. and García-Frías, J., Error Floor Analysis in LDGM Codes, in Proc. 2010 IEEE Int. Symp. on Information Theory (ISIT’2010), Austin, TX, USA, June 13⁠–⁠18, 2010, pp. 734⁠–⁠738. https://doi.org/10.1109/ISIT.2010.5513607

    Chapter  Google Scholar 

  7. Gao, W. and Polyanskiy, Y., On the Bit Error Rate of Repeated Error-Correcting Codes, in Proc. 48th Annu. Conf. on Information Sciences and Systems (CISS’2014), Princeton, NJ, USA, Mar. 19⁠–⁠21, 2014, pp. 1⁠–⁠6. https://doi.org/10.1109/CISS.2014.6814087

    Google Scholar 

  8. Höst, S., Johannesson, R., and Zyablov, V.V., Woven Convolutional Codes I: Encoder Properties, IEEE Trans. Inform. Theory, 2002, vol. 48, no. 1, pp. 149⁠–⁠161. https://doi.org/10.1109/18.971745

    Article  MathSciNet  Google Scholar 

  9. Freudenberger, J., Bossert, M., Shavgulidze, S., and Zyablov, V., Woven Turbo Codes, in Proc. 7th Int. Workshop on Algebraic and Combinatorial Coding Theory (ACCT’2000), Bansko, Bulgaria, June 18⁠–⁠24, 2000, pp. 145⁠–⁠150. Available at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.345&rep=rep1&type=pdf

    Google Scholar 

  10. Benedetto, S. and Montorsi, G., Design of Parallel Concatenated Convolutional Codes, IEEE Trans. Commun., 1996, vol. 44, no. 5, pp. 591⁠–⁠600. https://doi.org/10.1109/26.494303

    Article  Google Scholar 

  11. Berrou, C., Glavieux, A., and Thitimajshima, P., Near Shannon Limit Error-Correcting Coding and Decoding: Turbo-Codes. 1, in Proc. IEEE Int. Conf. on Communications (ICC’93), Geneva, Switzerland, May 23⁠–⁠26, 1993, vol. 2, pp. 1064⁠–⁠1070. https://doi.org/10.1109/ICC.1993.397441

    Google Scholar 

  12. Douillard, C. and Berrou, C., Turbo Codes with Rate-m/(m+1) Constituent Convolutional Codes, IEEE Trans. Commun., 2005, vol. 53, no. 10, pp. 1630⁠–⁠1638. https://doi.org/10.1109/TCOMM.2005.857165

    Article  Google Scholar 

  13. Zhang, Q., Liu, A., Zhang, Y., and Liang, X., Practical Design and Decoding of Parallel Concatenated Structure for Systematic Polar Codes, IEEE Trans. Commun., 2016, vol. 64, no. 2, pp. 456⁠–⁠466. https://doi.org/10.1109/TCOMM.2015.2502246

    Article  Google Scholar 

  14. Viterbi, A.J., Convolutional Codes and Their Performance in Communication Systems, IEEE Trans. Commun. Technol., 1971, vol. 19, no. 5, pp. 751⁠–⁠772. https://doi.org/10.1109/TCOM.1971.1090700

    Article  MathSciNet  Google Scholar 

  15. van De Meeberg, L., A Tightened Upper Bound on the Error Probability of Binary Convolutional Codes with Viterbi Decoding, IEEE Trans. Inform. Theory, 1974, vol. 20, no. 3, pp. 389⁠–⁠391. https://doi.org/10.1109/TIT.1974.1055216

    Article  Google Scholar 

  16. Herro, M., Hu, L., and Nowack, J., Bit Error Probability Calculations for Convolutional Codes with Short Constraint Lengths on Very Noisy Channels, IEEE Trans. Commun., 1988, vol. 36, no. 7, pp. 885⁠–⁠888. https://doi.org/10.1109/26.2819

    Article  Google Scholar 

  17. Chiaraluce, F., Gambi, E., Mazzone, M., and Pierleoni, P., A Technique to Evaluate an Exact Formula for the Bit Error Rate of Convolutional Codes in Case of Finite Length Words, Proc. IEEE Region 10 Annu. Conf. on Speech and Image Technologies for Computing and Telecommunications (IEEE TENCON’97), Queensland Univ. of Technology, Brisbane, Australia, Dec. 2⁠–⁠4, 1997, Deriche, M., Moody, M., and Bennamoun, M., Eds., vol. 1, pp. 113⁠–⁠116. https://doi.org/10.1109/TENCON.1997.647271

    Google Scholar 

  18. Forney, G., The Viterbi Algorithm, Proc. IEEE, 1973, vol. 61, no. 3, pp. 268⁠–⁠278. https://doi.org/10.1109/PROC.1973.9030

    Article  MathSciNet  Google Scholar 

  19. Yoshikawa, H., Theoretical Analysis of Bit Error Probability for Punctured Convolutional Codes, in Proc. 2012 IEEE Int. Sympos. on Information Theory and Its Applications (ISITA’2012), Honolulu, HI, USA, Oct. 28⁠–⁠31, 2012, pp. 658⁠–⁠661.

    Google Scholar 

  20. Bocharova, I.E., Hug, F., Johannesson, R., and Kudryashov, B.D., A Closed-Form Expression for the Exact Bit Error Probability for Viterbi Decoding of Convolutional Codes, IEEE Trans. Inform. Theory, 2012, vol. 58, no. 7, pp. 4635⁠–⁠4644. https://doi.org/10.1109/TIT.2012.2193375

    Article  MathSciNet  Google Scholar 

  21. Smeshko, A., Ivanov, F., and Zyablov, V., Theoretical Estimates of Burst Error Probability for Convolutional Codes, in Proc. 2020 Int. Symp. on Information Theory and Its Applications (ISITA’2020), Kapolei, HI, USA, Oct. 24⁠–⁠27, 2020, pp. 136⁠–⁠140.

    Google Scholar 

  22. Smeshko, A., Ivanov, F., and Zyablov, V., The Influence of Active Distances on the Distribution of Bursts, in Proc. XVI Int. Symp. “Problems of Redundancy in Information and Control Systems” (REDUNDANCY’2019), Moscow, Russia, Oct. 21⁠–⁠25, 2019, pp. 110⁠–⁠114. https://doi.org/10.1109/REDUNDANCY48165.2019.9003349

    Google Scholar 

  23. Smeshko, A., Ivanov, F., and Zyablov, V., Upper and Lower Estimates of Frame Error Rate for Convolutional Codes, Proc. 2020 Int. Symp. on Information Theory and Its Applications (ISITA’2020), Kapolei, HI, USA, Oct. 24⁠–⁠27, 2020, pp. 160⁠–⁠164.

    Google Scholar 

  24. Kudryashov, B.D., Osnovy teorii kodirovaniya (Fundamentals of Coding Theory), St. Petersburg: BHV-Petersburg, 2016.

    Google Scholar 

  25. Höst, S., Johannesson, R., Zigangirov, K., and Zyablov, V., Active Distances for Convolutional Codes, IEEE Trans. Inform. Theory, 1999, vol. 45, no. 2, pp. 658⁠–⁠669. https://doi.org/10.1109/18.749009

    Article  MathSciNet  Google Scholar 

  26. Miller, R.L., Deutsch, L.J., and Butman, S.A., On the Error Statistics of Viterbi Decoding and the Performance of Concatenated Codes, NASA STI/Recon Tech. Rep., Sept. 1, 1981, no. 81-33364. Available at https://archive.org/details/nasa_techdoc_19810024821

  27. Justesen, J. and Andersen, J., Critical Lengths of Error Events in Convolutional Codes, IEEE Trans. Inform. Theory, 1998, vol. 44, no. 4, pp. 1608⁠–⁠1611. https://doi.org/10.1109/18.681339

    Article  MathSciNet  Google Scholar 

  28. [GitHub online repository], 2021. https://github.com/smeshk/Active-distances-their-spectrum-and-estimates-for-convolutional-code

Download references

Funding

The research was funded under the HSE University Basic Research Program in 2022.

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Peredachi Informatsii, 2022, Vol. 58, No. 2, pp. 24–40 https://doi.org/10.31857/S055529232202003X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurmukova, A., Ivanov, F. & Zyablov, V. Theoretical and Experimental Upper and Lower Bounds on the Efficiency of Convolutional Codes in a Binary Symmetric Channel. Probl Inf Transm 58, 122–136 (2022). https://doi.org/10.1134/S003294602202003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003294602202003X

Keywords

Navigation