Skip to main content
Log in

On the Complexity of Fibonacci Coding

  • Coding Theory
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

We show that converting an n-digit number from a binary to Fibonacci representation and backward can be realized by Boolean circuits of complexity O(M(n) log n), where M(n) is the complexity of integer multiplication. For a more general case of r-Fibonacci representations, the obtained complexity estimates are of the form \({2^O}{(\sqrt {\log n} )_n}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lekkerkerker, C.G., Representation of Natural Numbers as a Sum of Fibonacci Numbers, Simon Stevin, 1952, vol. 29, pp. 190–195.

    MathSciNet  MATH  Google Scholar 

  2. Kautz, W.H., Fibonacci Codes for Synchronization Control, IEEE Trans. Inform. Theory, 1965, vol. 11, no. 2, pp. 284–292.

    Article  MathSciNet  MATH  Google Scholar 

  3. Daykin, D.E., Representation of Natural Numbers as Sums of Generalized Fibonacci Numbers, J. London Math. Soc., 1960, vol. 35, no. 2, pp. 143–160.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bergman, G., A Number System with an Irrational Base, Math. Magazine, 1957, vol. 31, no. 2, pp. 98–110.

    Article  MathSciNet  MATH  Google Scholar 

  5. Apostolico, A. and Fraenkel, A.S., Robust Transmission of Unbounded Strings Using Fibonacci Representations, IEEE Trans. Inform. Theory, 1987, vol. 33, no. 2, pp. 238–245.

    Article  MathSciNet  MATH  Google Scholar 

  6. Klein, S.T. and Ben-Nissan, M.K., On the Usefulness of Fibonacci Compression Codes, Comput. J., 2010, vol. 53, no. 6, pp. 701–716.

    Article  Google Scholar 

  7. Immink, K.A.S., Codes for Mass Data Storage Systems, Eindhoven, The Netherlands: Shannon Foundation Publ., 2004, 2nd ed.

    Google Scholar 

  8. Ahlbach, C., Usatine, J., Frougny, C., and Pippenger, N., Efficient Algorithms for Zeckendorf Arithmetic, Fibonacci Quart., 2013, vol. 51, no. 3, pp. 249–255.

    MathSciNet  MATH  Google Scholar 

  9. Wegener, I., The Complexity of Boolean Functions, Chicester: Wiley; Stuttgart: Teubner, 1987.

    MATH  Google Scholar 

  10. Berstel, J., Fibonacci Words—A Survey, The Book of L, Rozenberg, G. and Salomaa, A., Eds., Berlin; New York: Springer-Verlag, 1986, pp. 13–27.

    Book  MATH  Google Scholar 

  11. Frougny, C., Pelantová, E., and Svobodová, M., Parallel Addition in Non-standard Numeration Systems, Theor. Comput. Sci., 2011, vol. 412, no. 41, pp. 5714–5727.

    Article  MathSciNet  MATH  Google Scholar 

  12. Fürer, M., Faster Integer Multiplication, SIAM J. Comput., 2009, vol. 39, no. 3, pp. 979–1005.

    Article  MathSciNet  MATH  Google Scholar 

  13. Gashkov, S.B., Zanimatel’naya komp’yuternaya arifmetika. Bystrye algoritmy operatsii s chislami i mnogochlenami (Computer Arithmetic for Entertainment. Fast Algorithms for Operations with Numbers and Polynomials). Moscow: Librokom, 2012.

    Google Scholar 

  14. Reif, J. and Tate, S., Optimal Size Integer Division Circuits, SIAM J. Comput., 1990, vol. 19, no. 5, pp. 912–924.

    Article  MathSciNet  MATH  Google Scholar 

  15. Miles, E.P., Jr., Generalized Fibonacci Numbers and Associated Matrices, Amer. Math. Monthly, 1960, vol. 67, no. 8, pp. 745–752.

    Google Scholar 

  16. Spickerman, W.R. and Joyner, R.N., Binet’s Formula for the Recursive Sequence of Order k, Fibonacci Quart., 1984, vol. 22, no. 4, pp. 327–331.

    MathSciNet  MATH  Google Scholar 

  17. Dresden, G.P.B. and Du, Z., A Simplified Binet Formula for k-Generalized Fibonacci Numbers, J. Integer Seq., 2014, vol. 17, no. 4, Article 14.4.7 (9 pp.)

    Google Scholar 

  18. Howard, F.T., Generalizations of a Fibonacci Identity, in Applications of Fibonacci Numbers, vol. 8 (Proc. 8th Int. Research Conf. on Fibonacci Numbers and Their Applications, Rochester, NY, USA, June 22–26, 1998), Dordrecht: Kluwer, 1999, pp. 201–211.

    Google Scholar 

  19. Toom, A.L., The Complexity of a Scheme of Functional Elements Simulating the Multiplication of Integers, Dokl. Akad. Nauk SSSR, 1963, vol. 150, no. 3, pp. 496–498 [Soviet Math. Doklady (Engl. Transl.), 1963, vol. 3, pp. 714–716].

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Sergeev.

Additional information

Original Russian Text © I.S. Sergeev, 2018, published in Problemy Peredachi Informatsii, 2018, Vol. 54, No. 4, pp. 51–59.

Supported in part by the Russian Foundation for Basic Research, project no. 17-01-00485).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergeev, I.S. On the Complexity of Fibonacci Coding. Probl Inf Transm 54, 343–350 (2018). https://doi.org/10.1134/S0032946018040038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946018040038

Navigation