Skip to main content
Log in

A Local Large Deviation Principle for Inhomogeneous Birth–Death Processes

  • Large Systems
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

The paper considers a continuous-time birth–death process where the jump rate has an asymptotically polynomial dependence on the process position. We obtain a rough exponential asymptotic for the probability of trajectories of a re-scaled process contained within a neighborhood of a given continuous nonnegative function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dembo, A. and Zeitouni, O., Large Deviations Techniques and Applications, New York: Springer, 1998, 2nd ed.

    Book  MATH  Google Scholar 

  2. Deuschel, J.-D. and Stroock, D.W., Large Deviations, Boston: Academic, 1989.

    MATH  Google Scholar 

  3. den Hollander, F., Large Deviations, Providence, RI: Amer. Math. Soc., 2000.

    MATH  Google Scholar 

  4. Olivieri, E. and Vares, M.E., Large Deviations and Metastability, Cambridge, UK: Cambridge Univ. Press, 2005.

    Book  MATH  Google Scholar 

  5. Puhalskii, A., Large Deviations and Idempotent Probability, Boca Raton, FL: Chapman & Hall/CRC, 2001.

    Book  MATH  Google Scholar 

  6. Varadhan, S.R.S., Large Deviations and Applications, Philadelphia: SIAM, 1984.

    Book  MATH  Google Scholar 

  7. Suhov, Y. and Stuhl, I., On Principles of Large Deviation and Selected Data Compression, arXiv: 1604.06971 [cs.IT], 2016.

    MATH  Google Scholar 

  8. Suhov, Y.M. and Stuhl, I., Selected Data Compression: A Refinement of Shannon’s Principle, Analytical and Computational Methods in Probability Theory (Proc. 1st Int. Conf. ACMPT’2017, Moscow, Russia, Oct. 23–27, 2017), Rykov, V., Singpurwalla, N.D., and Zubkov, A.M., Eds., Lect. Notes Comp. Sci., vol. 10684, New York: Springer, 2018.

    Google Scholar 

  9. Mazel, A., Suhov, Yu., Stuhl, I., and Zohren, S., Dominance of Most Tolerant Species in Multi-type Lattice Widom–Rowlinson Models, J. Stat. Mech., 2014, no. 8, p. P08010.

    Google Scholar 

  10. Kelbert, M., Stuhl, I., and Suhov, Y., Weighted Entropy and Optimal Portfolios for Risk-Averse Kelly Investments, Aequationes Math., 2018, vol. 92, no. 1, pp. 165–200.

    Article  MathSciNet  MATH  Google Scholar 

  11. Mogulskii, A., Pechersky, E., and Yambartsev, A., Large Deviations for Excursions of Non-homogeneous Markov Processes, Electron. Commun. Probab., 2014, vol. 19, Paper no. 37 (8 pp.).

    Google Scholar 

  12. Vvedenskaya, N., Suhov, Y., and Belitsky, V., A Non-linear Model of Trading Mechanism on a Financial Market, Markov Process. Related Fields, 2013, vol. 19, no. 1, pp. 83–98.

    MathSciNet  MATH  Google Scholar 

  13. Feller, W., An Introduction to Probability Theory and Its Applications, New York: Wiley, 1966. Translated under the title Vvedenie v teoriyu veroyatnostei i ee prilozheniya, Moscow: Mir, 1967, 2 vols.

    MATH  Google Scholar 

  14. Kelbert, M. and Suhov, Y., Probability and Statistics by Example, vol. 2: Markov Chains: A Primer in Random Processes and Their Applications, Cambridge, UK: Cambridge Univ. Press, 2008. Translated under the title Veroyatnost’ i statistika v primerakh i zadachakh, vol. 2: Markovskie tsepi kak otpravnaya tochka teorii sluchainykh protsessov, Moscow: MCCME, 2010.

    MATH  Google Scholar 

  15. Karlin, S. and Taylor, H.M., A First Course in Stochastic Processes, New York: Academic, 1975, 2nd ed.

    MATH  Google Scholar 

  16. Korolyuk, V.S., Portenko, N.I., Skorokhod, A.V., and Turbin, A.F., Spravochnik po teorii veroyatnostei i matematicheskoi statistike (Handbook in Probability Theory and Mathematical Statistics), Moscow: Nauka, 1985, 2nd ed.

    MATH  Google Scholar 

  17. Dynkin, E.B., Markovskie protsessy, Moscow: Fizmatgiz, 1963. Translated under the title Markov Processes, Berlin: Springer; New York: Academic, 1965.

    MATH  Google Scholar 

  18. Itô, K., Veroyatnostnye protsessy (Stochastic Processes), vol. II, Moscow: Inostr. Lit., 1963.

    Google Scholar 

  19. Itô, K., Stochastic Processes: Lectures Given at Aarhus University, Berlin: Springer, 2004.

    Book  MATH  Google Scholar 

  20. Itô, K., Essentials of Stochastic Processes, Providence, RI: Amer. Math. Soc., 2006.

    Book  MATH  Google Scholar 

  21. Karlin, S. and McGregor, J., The Classification of Birth and Death Processes, Trans. Amer. Math. Soc., 1957, vol. 86, no. 2, pp. 366–400.

    Article  MathSciNet  MATH  Google Scholar 

  22. Ledermann, W. and Reuter, G.E.H., Spectral Theory for the Differential Equations of Simple Birth and Death Processes, Philos. Trans. Roy. Soc. London, Ser. A, 1954, vol. 246, pp. 321–369.

    Article  MathSciNet  MATH  Google Scholar 

  23. Norris, J.R., Markov Chains, Cambridge, UK: Cambridge Univ. Press, 1998.

    MATH  Google Scholar 

  24. Stroock, D.W., An Introduction to Markov Processes, Berlin: Springer, 2014, 2nd ed.

    Book  MATH  Google Scholar 

  25. Borovkov, A.A. and Mogul’skii, A.A., On Large Deviation Principles in Metric Spaces, Sibirsk. Mat. Zh., 2010, vol. 51, no. 6, pp. 1251–1269 [Siberian Math. J. (Engl. Transl.), 2010, vol. 51, no. 6, pp. 989–1003].

    MathSciNet  MATH  Google Scholar 

  26. Borovkov, A.A. and Mogulskii, A.A., Large Deviation Principles for Random Walk Trajectories. I, Teor. Veroyatn. Primen., 2011, vol. 56, no. 4, pp. 627–655 [Theory Probab. Appl. (Engl. Transl.), 2011, vol. 56, no. 4, pp. 538–561].

    Article  Google Scholar 

  27. Logachov, A.V., The Local Principle of Large Deviations for Solutions of Itô Stochastic Equations with Quick Drift, Ukr. Mat. Visn., 2015, vol. 12, no. 4, pp. 457–471 [J. Math. Sci. (N.Y.) (Engl. Transl.), 2016, vol. 218, no. 1, pp. 28–38].

    Google Scholar 

  28. Borovkov, A.A. and Mogul’skiĭ, A.A., Iniqualities and Principle of Large Deviations for the Trajectories of Processes with Independent Increments, Sibirsk. Mat. Zh., 2013, vol. 54, no. 2, pp. 286–297 [Siberian Math. J. (Engl. Transl.), 2013, vol. 54, no. 2, pp. 217–226].

    MathSciNet  Google Scholar 

  29. Dunford, N. and Schwartz, J.T., Linear Operators, Part 1: General Theory, New York: Interscience, 1958. Translated under the title Lineinye operatory, vol. 1: Obshchaya teoriya, Moscow: Inostr. Lit., 1962.

    MATH  Google Scholar 

  30. Rudin, W., Real and Complex Analysis, New York: McGraw-Hill, 1987, 3rd ed.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Vvedenskaya.

Additional information

Original Russian Text © N.D. Vvedenskaya, A.V. Logachov, Yu.M. Suhov, A.A. Yambartsev, 2018, published in Problemy Peredachi Informatsii, 2018, Vol. 54, No. 3, pp. 73–91.

The research was carried out at the Institute for Information Transmission Problems of the Russian Academy of Sciences at the expense of the Russian Science Foundation, project no. 14-50-00150.

The research was carried out at the expense of the Russian Science Foundation, project no. 18-11-00129.

Supported by the Brazilian National Council for Scientific and Technological Development (CNPq), grant no. 301050/2016-3, and São Paulo Research Foundation (FAPESP), grant no. 2017/10555-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vvedenskaya, N.D., Logachov, A.V., Suhov, Y.M. et al. A Local Large Deviation Principle for Inhomogeneous Birth–Death Processes. Probl Inf Transm 54, 263–280 (2018). https://doi.org/10.1134/S0032946018030067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946018030067

Navigation