Abstract
The paper considers a continuous-time birth–death process where the jump rate has an asymptotically polynomial dependence on the process position. We obtain a rough exponential asymptotic for the probability of trajectories of a re-scaled process contained within a neighborhood of a given continuous nonnegative function.
Similar content being viewed by others
References
Dembo, A. and Zeitouni, O., Large Deviations Techniques and Applications, New York: Springer, 1998, 2nd ed.
Deuschel, J.-D. and Stroock, D.W., Large Deviations, Boston: Academic, 1989.
den Hollander, F., Large Deviations, Providence, RI: Amer. Math. Soc., 2000.
Olivieri, E. and Vares, M.E., Large Deviations and Metastability, Cambridge, UK: Cambridge Univ. Press, 2005.
Puhalskii, A., Large Deviations and Idempotent Probability, Boca Raton, FL: Chapman & Hall/CRC, 2001.
Varadhan, S.R.S., Large Deviations and Applications, Philadelphia: SIAM, 1984.
Suhov, Y. and Stuhl, I., On Principles of Large Deviation and Selected Data Compression, arXiv: 1604.06971 [cs.IT], 2016.
Suhov, Y.M. and Stuhl, I., Selected Data Compression: A Refinement of Shannon’s Principle, Analytical and Computational Methods in Probability Theory (Proc. 1st Int. Conf. ACMPT’2017, Moscow, Russia, Oct. 23–27, 2017), Rykov, V., Singpurwalla, N.D., and Zubkov, A.M., Eds., Lect. Notes Comp. Sci., vol. 10684, New York: Springer, 2018.
Mazel, A., Suhov, Yu., Stuhl, I., and Zohren, S., Dominance of Most Tolerant Species in Multi-type Lattice Widom–Rowlinson Models, J. Stat. Mech., 2014, no. 8, p. P08010.
Kelbert, M., Stuhl, I., and Suhov, Y., Weighted Entropy and Optimal Portfolios for Risk-Averse Kelly Investments, Aequationes Math., 2018, vol. 92, no. 1, pp. 165–200.
Mogulskii, A., Pechersky, E., and Yambartsev, A., Large Deviations for Excursions of Non-homogeneous Markov Processes, Electron. Commun. Probab., 2014, vol. 19, Paper no. 37 (8 pp.).
Vvedenskaya, N., Suhov, Y., and Belitsky, V., A Non-linear Model of Trading Mechanism on a Financial Market, Markov Process. Related Fields, 2013, vol. 19, no. 1, pp. 83–98.
Feller, W., An Introduction to Probability Theory and Its Applications, New York: Wiley, 1966. Translated under the title Vvedenie v teoriyu veroyatnostei i ee prilozheniya, Moscow: Mir, 1967, 2 vols.
Kelbert, M. and Suhov, Y., Probability and Statistics by Example, vol. 2: Markov Chains: A Primer in Random Processes and Their Applications, Cambridge, UK: Cambridge Univ. Press, 2008. Translated under the title Veroyatnost’ i statistika v primerakh i zadachakh, vol. 2: Markovskie tsepi kak otpravnaya tochka teorii sluchainykh protsessov, Moscow: MCCME, 2010.
Karlin, S. and Taylor, H.M., A First Course in Stochastic Processes, New York: Academic, 1975, 2nd ed.
Korolyuk, V.S., Portenko, N.I., Skorokhod, A.V., and Turbin, A.F., Spravochnik po teorii veroyatnostei i matematicheskoi statistike (Handbook in Probability Theory and Mathematical Statistics), Moscow: Nauka, 1985, 2nd ed.
Dynkin, E.B., Markovskie protsessy, Moscow: Fizmatgiz, 1963. Translated under the title Markov Processes, Berlin: Springer; New York: Academic, 1965.
Itô, K., Veroyatnostnye protsessy (Stochastic Processes), vol. II, Moscow: Inostr. Lit., 1963.
Itô, K., Stochastic Processes: Lectures Given at Aarhus University, Berlin: Springer, 2004.
Itô, K., Essentials of Stochastic Processes, Providence, RI: Amer. Math. Soc., 2006.
Karlin, S. and McGregor, J., The Classification of Birth and Death Processes, Trans. Amer. Math. Soc., 1957, vol. 86, no. 2, pp. 366–400.
Ledermann, W. and Reuter, G.E.H., Spectral Theory for the Differential Equations of Simple Birth and Death Processes, Philos. Trans. Roy. Soc. London, Ser. A, 1954, vol. 246, pp. 321–369.
Norris, J.R., Markov Chains, Cambridge, UK: Cambridge Univ. Press, 1998.
Stroock, D.W., An Introduction to Markov Processes, Berlin: Springer, 2014, 2nd ed.
Borovkov, A.A. and Mogul’skii, A.A., On Large Deviation Principles in Metric Spaces, Sibirsk. Mat. Zh., 2010, vol. 51, no. 6, pp. 1251–1269 [Siberian Math. J. (Engl. Transl.), 2010, vol. 51, no. 6, pp. 989–1003].
Borovkov, A.A. and Mogulskii, A.A., Large Deviation Principles for Random Walk Trajectories. I, Teor. Veroyatn. Primen., 2011, vol. 56, no. 4, pp. 627–655 [Theory Probab. Appl. (Engl. Transl.), 2011, vol. 56, no. 4, pp. 538–561].
Logachov, A.V., The Local Principle of Large Deviations for Solutions of Itô Stochastic Equations with Quick Drift, Ukr. Mat. Visn., 2015, vol. 12, no. 4, pp. 457–471 [J. Math. Sci. (N.Y.) (Engl. Transl.), 2016, vol. 218, no. 1, pp. 28–38].
Borovkov, A.A. and Mogul’skiĭ, A.A., Iniqualities and Principle of Large Deviations for the Trajectories of Processes with Independent Increments, Sibirsk. Mat. Zh., 2013, vol. 54, no. 2, pp. 286–297 [Siberian Math. J. (Engl. Transl.), 2013, vol. 54, no. 2, pp. 217–226].
Dunford, N. and Schwartz, J.T., Linear Operators, Part 1: General Theory, New York: Interscience, 1958. Translated under the title Lineinye operatory, vol. 1: Obshchaya teoriya, Moscow: Inostr. Lit., 1962.
Rudin, W., Real and Complex Analysis, New York: McGraw-Hill, 1987, 3rd ed.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © N.D. Vvedenskaya, A.V. Logachov, Yu.M. Suhov, A.A. Yambartsev, 2018, published in Problemy Peredachi Informatsii, 2018, Vol. 54, No. 3, pp. 73–91.
The research was carried out at the Institute for Information Transmission Problems of the Russian Academy of Sciences at the expense of the Russian Science Foundation, project no. 14-50-00150.
The research was carried out at the expense of the Russian Science Foundation, project no. 18-11-00129.
Supported by the Brazilian National Council for Scientific and Technological Development (CNPq), grant no. 301050/2016-3, and São Paulo Research Foundation (FAPESP), grant no. 2017/10555-0.
Rights and permissions
About this article
Cite this article
Vvedenskaya, N.D., Logachov, A.V., Suhov, Y.M. et al. A Local Large Deviation Principle for Inhomogeneous Birth–Death Processes. Probl Inf Transm 54, 263–280 (2018). https://doi.org/10.1134/S0032946018030067
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0032946018030067