Advertisement

Problems of Information Transmission

, Volume 54, Issue 1, pp 34–47 | Cite as

Mollard Code as a Robust Nonlinear Code

  • D. I. Kovalevskaya
Coding Theory

Abstract

We consider the Mollard construction from the point of view of its efficiency for detecting multiple bit errors. We propose a generalization of the classical extended Mollard code to arbitrary code lengths. We show partial robustness of this construction: such codes have less undetected and miscorrected errors than linear codes. We prove that, for certain code parameters, the generalization of the Mollard construction can ensure better error protection than a generalization of Vasil’ev codes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, X., Dong, G., Pan, L., and Zhou, R., Error Correction Codes and Signal Processing in Flash Memory, Flash Memories, Stievano, I., Ed., Rijeka, Croatia: InTech, 2011, pp. 57–82. Available at https://www.intechopen.com/download/pdf/19378.Google Scholar
  2. 2.
    Wang, Z., Karpovsky, M., and Kulikowski, K.J., Replacing Linear Hamming Codes by Robust Nonlinear Codes Results in a Reliability Improvement of Memories, in Proc. 2009 IEEE/IFIP Int. Conf. on Dependable Systems and Networks (DSN), Estoril, Lisbon, Portugal, June 29–July 2, 2009, pp. 514–523.Google Scholar
  3. 3.
    Wang, Z., Karpovsky, M., and Joshi, A., Nonlinear Multi-Error Correcting Codes for Reliable MLC NAND Flash Memories, IEEE Trans. VLSI Syst., 2012, vol. 20, no. 7, pp. 1221–1235.CrossRefGoogle Scholar
  4. 4.
    Wang, Z., Karpovsky, M., and Kulikowski, K.J., Design of Memories with Concurrent Error Detection and Correction by Nonlinear SEC-DED Codes // J. Electron. Test. 2010, vol. 26, no. 5, pp. 559–580.CrossRefGoogle Scholar
  5. 5.
    Avgustinovich, S.V. and Solov’eva, F.I., On the Nonsystematic Perfect Binary Codes, Probl. Peredachi Inf., 1996, vol. 32, no. 3, pp. 47–50 [Probl. Inf. Trans. (Engl. Transl.), 1996, vol. 32, no. 3, pp. 258–261].MathSciNetzbMATHGoogle Scholar
  6. 6.
    Hergert, F., Algebraische Methoden für nichtlineare Codes, Dissertation, Technische Hochschule Darmstadt, Germany, 1985.Google Scholar
  7. 7.
    Avgustinovich, S.V., Solov’eva, F.I., and Heden, O., On the Ranks and Kernels Problem for Perfect Codes, Probl. Peredachi Inf., 2003, vol. 39, no. 4, pp. 30–34 [Probl. Inf. Trans. (Engl. Transl.), 2003, vol. 39, no. 4, pp. 341–345].MathSciNetzbMATHGoogle Scholar
  8. 8.
    Solov’eva, F.I., Survey on Perfect Codes, Mat. Vopr. Kibern., 2013, vol. 18, pp. 5–34.Google Scholar
  9. 9.
    Vasil’ev, Yu.L., On Nongroup Densely Packed Codes, Probl. Kibern., 1962, vol. 8, pp. 337–339.zbMATHGoogle Scholar
  10. 10.
    Mollard, M., A Generalized Parity Function and Its Use in the Construction of Perfect Codes, SIAM J. Algebr. Discrete Methods, 1986, vol. 7, no. 1, pp. 113–115.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Avgustinovich, S.V. and Solov’eva, F.I., Construction of Perfect Binary Codes by Sequential Shifts of ã-Components, Probl. Peredachi Inf., 1997, vol. 33, no. 3, pp. 15–21 [ Probl. Inf. Trans. ( Engl. Transl.), 1997, vol. 33, no. 3, pp. 202–207].MathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.St. Petersburg State University of Aerospace InstrumentationSt. PetersburgRussia

Personalised recommendations