Problems of Information Transmission

, Volume 54, Issue 1, pp 20–33 | Cite as

On the Energy-Constrained Diamond Norm and Its Application in Quantum Information Theory

Information Theory
  • 1 Downloads

Abstract

We consider a family of energy-constrained diamond norms on the set of Hermitian- preserving linear maps (superoperators) between Banach spaces of trace class operators. We prove that any norm from this family generates strong (pointwise) convergence on the set of all quantum channels (which is more adequate for describing variations of infinite-dimensional channels than the diamond norm topology). We obtain continuity bounds for information characteristics (in particular, classical capacities) of energy-constrained infinite-dimensional quantum channels (as functions of a channel) with respect to the energy-constrained diamond norms, which imply uniform continuity of these characteristics with respect to the strong convergence topology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Holevo, A.S., Kvantovye sistemy, kanaly, informatsiya, Moscow: MCCME, 2010. Translated under the title Quantum Systems, Channels, Information: A Mathematical Introduction, Berlin: De Gruyter, 2012.Google Scholar
  2. 2.
    Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., and Lloyd, S., Gaussian Quantum Information, Rev. Mod. Phys., 2012, vol. 84, no. 2, pp. 621–669.CrossRefGoogle Scholar
  3. 3.
    Paulsen, V.I., Completely Bounded Maps and Operators Algebras, Cambridge: Cambridge Univ. Press, 2002.MATHGoogle Scholar
  4. 4.
    Aharonov, D., Kitaev, A., and Nisan, N., Quantum Circuits with Mixed States, in Proc. 30th Annual ACM Sympos. on Theory of Computing (STOC’98), May 23–26, 1998, Dallas, TX, USA. New York: ACM, 1999, pp. 20–30.Google Scholar
  5. 5.
    Wilde, M.M., Quantum Information Theory, Cambridge, UK: Cambridge Univ. Press, 2013.CrossRefMATHGoogle Scholar
  6. 6.
    Leung, D. and Smith, G., Continuity of Quantum Channel Capacities, Comm. Math. Phys., 2009, vol. 292, no. 1, pp. 201–215.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Kretschmann, D., Schlingemann, D., and Werner, R.F., A Continuity Theorem for Stinespring’s Dilation, arXiv:0710.2495 [quant-ph], 2007.MATHGoogle Scholar
  8. 8.
    Shirokov, M.E. and Holevo, A.S., On Approximation of Infinite-Dimensional Quantum Channels, Probl. Peredachi Inf., 2008, vol. 44, no. 2, pp. 3–22 [Probl. Inf. Trans. (Engl. Transl.), 2008, vol. 44, no. 2, pp. 73–90].MathSciNetGoogle Scholar
  9. 9.
    Lindblad, G., Expectations and Entropy Inequalities for Finite Quantum Systems, Comm. Math. Phys., 1974, vol. 39, no. 2, pp. 111–119.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Wehrl, A., General Properties of Entropy, Rev. Mod. Phys., 1978, vol. 50, no. 2, pp. 221–260.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lindblad, G., Entropy, Information and Quantum Measurements, Comm. Math. Phys., 1973, vol. 33, no. 4, pp. 305–322.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Reed, M. and Simon, B., Methods of Modern Mathematical Physics, vol. 1: Functional Analysis, New York: Academic, 1972. Translated under the title Metody sovremennoi matematicheskoi fiziki, vol. 1: Funktsional’nyi analiz, Moscow: Mir, 1978.MATHGoogle Scholar
  13. 13.
    Pirandola, S., Laurenza, R., Ottaviani, C., and Banchi, L., Fundamental Limits of Repeaterless Quantum Communications, Nat. Commun., 2017, vol. 8, Article no. 15043.Google Scholar
  14. 14.
    Shirokov, M.E., Entropy Characteristics of Subsets of States. I, Izv. Ross. Akad. Nauk, Ser. Mat., 2006, vol. 70, no. 6, pp. 193–222 [Izv. Math. (Engl. Transl.), 2006, vol. 70, no. 6, pp. 1265–1292].MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Shirokov, M.E., Tight Uniform Continuity Bounds for the Quantum Conditional Mutual Information, for the Holevo Quantity, and for Capacities of Quantum Channels, J. Math. Phys., 2017, vol. 58, no. 10, p. 102202.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Holevo, A.S., Bounds for the Quantity of Information Transmitted by a Quantum Communication Channel, Probl. Peredachi Inf., 1973, vol. 9, no. 3, pp. 3–11 [Probl. Inf. Trans. (Engl. Transl.), 1973, vol. 9, no. 3, pp. 177–183].MATHGoogle Scholar
  17. 17.
    Holevo, A.S. and Shirokov, M.E., Continuous Ensembles and the Capacity of Infinite-Dimensional Quantum Channels, Teor. Veroyatnost. i Primenen., 2005, vol. 50, no. 1, pp. 98–114 [Theory Probab. Appl. (Engl. Transl.), 2006, vol. 50, no. 1, pp. 86–98].MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Billingsley, P., Convergence of Probability Measures, New York: Wiley, 1968. Translated under the title Skhodimost’ veroyatnostnykh mer, Moscow: Nauka, 1977.MATHGoogle Scholar
  19. 19.
    Winter, A., Tight Uniform Continuity Bounds for Quantum Entropies: Conditional Entropy, Relative Entropy Distance and Energy Constraints, Comm. Math. Phys., 2016, vol. 347, no. 1, pp. 291–313.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Holevo, A.S., Classical Capacities of a Quantum Channel with a Restriction at the Input, Teor. Veroyatnost. i Primenen., 2003, vol. 48, no. 2, pp. 359–374 [Theory Probab. Appl. (Engl. Transl.), 2004, vol. 48, no. 2, pp. 243–255].MathSciNetCrossRefGoogle Scholar
  21. 21.
    Wilde, M.M. and Qi, H., Energy-Constrained Private and Quantum Capacities of Quantum Channels, arXiv:1609.01997 [quant-ph], 2016.Google Scholar
  22. 22.
    Giovannetti, V., Holevo, A.S., and García-Patrón, R., A Solution of Gaussian Optimizer Conjecture for Quantum Channels, Comm. Math. Phys., 2015, vol. 334, no. 3, pp. 1553–1571.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Holevo, A.S., On the Constrained Classical Capacity of Infinite-Dimensional Covariant Quantum Channels, J. Math. Phys., 2016, vol. 57, no. 1, p. 015203.CrossRefMATHGoogle Scholar
  24. 24.
    Holevo, A.S. and Shirokov, M.E., On Classical Capacities of Infinite-Dimensional Quantum Channels, Probl. Peredachi Inf., 2013, vol. 49, no. 1, pp. 19–36 [Probl. Inf. Trans. (Engl. Transl.), 2013, vol. 49, no. 1, pp. 15–31].MathSciNetMATHGoogle Scholar
  25. 25.
    Winter, A., Energy-Constrained Diamond Norm with Applications to the Uniform Continuity of Continuous Variable Channel Capacities, arXiv:1712.10267 [quant-ph], 2017.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations