Problems of Information Transmission

, Volume 53, Issue 3, pp 242–250 | Cite as

Nonlinear q-ary codes with large code distance

Coding Theory

Abstract

We construct a family of nonlinear q-ary codes obtained from the corresponding families of modified complex Butson–Hadamard matrices. Parameters of the codes are quite close to the Plotkin bound and in a number of cases attain this bound. Furthermore, these codes admit rather simple encoding and decoding procedures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Butson, K.T., Generalized Hadamard Matrices, Proc. Amer. Math. Soc., 1962, vol. 13, no. 6, pp. 894–898.CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Baliga, A. and Horadam, K.J., Cocyclic Hadamard Matrices over Zt × Z2 2, Australas. J. Comb., 1995, vol. 11, pp. 123–134.MATHGoogle Scholar
  3. 3.
    Elliot, D.F. and Rao, K.R., Fast Transforms: Algorithms, Analyses, Applications, New York: Academic, 1982.Google Scholar
  4. 4.
    de Launey, W., Generalized Hadamard Matrices Whose Rows and Columns Form a Group, Combinatorial Mathematics X (Proc. Conf. Held in Adelaide, Australia, Aug. 23–27, 1982), Casse, L.R.A., Ed., Lect. Notes Math, vol. 1036. New York: Springer, 1983, pp. 154–176.Google Scholar
  5. 5.
    Maslen, D.K. and Rockmore, D.N., Generalized FFTs—A Survey of Some Recent Results, Groups and Computation II (Workshop on Groups and Computation, New Brunswick, NJ, USA, June 7–10, 1995), Finkelstein, L. and Kantor, W.M., Eds., Providence: AMS, 1997, pp. 183–237.Google Scholar
  6. 6.
    Baliga, A., New Self-dual Codes from Cocyclic Hadamard Matrices, J. Comb. Math. Comb. Comput., 1982, vol. 28, pp. 7–14.MATHMathSciNetGoogle Scholar
  7. 7.
    Horadam, K.J. and Udaya, P., Cocyclic Hadamard Codes, IEEE Trans. Inform. Theory, 2000, vol. 46, no. 4, pp. 1545–1550.CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Pinnawala, N. and Rao, A., Cocyclic Simplex Codes of Type α over Z4 and Z2s, IEEE Trans. Inform. Theory, 2004, vol. 50, no. 9, pp. 2165–2169.CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    MacWilliams, F.J. and Sloane, N.J.A., The Theory of Error-Correcting Codes, Amsterdam: North-Holland, 1977. Translated under the title Teoriya kodov, ispravlyayushchikh oshibki, Moscow: Svyaz’, 1979.MATHGoogle Scholar
  10. 10.
    Stepanov, S.A., A New Class of Quaternary Codes, Probl. Peredachi Inf., 2006, vol. 42, no. 1, pp. 3–12 [Probl. Inf. Trans. (Engl. Transl.), 2006, vol. 42, no. 1, pp. 1–9].MATHMathSciNetGoogle Scholar
  11. 11.
    Stepanov, S.A., A New Class of Nonlinear Q-ary Codes, Probl. Peredachi Inf., 2006, vol. 42, no. 3, pp. 45–58 [Probl. Inf. Trans. (Engl. Transl.), 2006, vol. 42, no. 3, pp. 204–216].MATHMathSciNetGoogle Scholar
  12. 12.
    Stepanov, S.A., Nonlinear Codes Constructed from Modified Butson–HadamardMatrices, Diskret. Mat., 2006, vol. 18, no. 4, pp. 137–147 [Discrete Math. Appl. (Engl. Transl.), 2006, vol. 16, no. 5, pp. 429–438].CrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Kharkevich Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations