Advertisement

Problems of Information Transmission

, Volume 53, Issue 3, pp 222–228 | Cite as

A note on random coding bounds for classical-quantum channels

  • M. Dalai
Information Theory

Abstract

A modified derivation of achievability results in classical-quantum channel coding theory is proposed, which has, in our opinion, two main benefits over previously used methods: it allows to (i) follow in a simple and clear way how binary hypothesis testing relates to channel coding achievability results, and (ii) derive in a unified way all previously known random coding achievability bounds on error exponents for classical and classical-quantum channels.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shannon, C.E., A Mathematical Theory of Communication, Bell Syst. Tech. J., 1948, vol. 27, no. 3, pp. 379–423; no. 4, pp. 623–656.CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Fano, R.M., Transmission of Information: A Statistical Theory of Communication, New York: Wiley, 1961.Google Scholar
  3. 3.
    Gallager, R.G., A Simple Derivation of the Coding Theorem and Some Applications, IEEE Trans. Inform. Theory, 1965, vol. 11, no. 1, pp. 3–18.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Hausladen, P., Jozsa, R., Schumacher, B., Westmoreland, M., and Wootters, W.K., Classical Information Capacity of a Quantum Channel, Phys. Rev. A, 1996, vol. 54, no. 3, pp. 1869–1876.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Schumacher, B. and Westmoreland, M.D., Sending Classical Information via Noisy Quantum Channels, Phys. Rev. A, 1997, vol. 56, no. 1, pp. 131–138.CrossRefGoogle Scholar
  6. 6.
    Holevo, A.S., The Capacity of the Quantum Channel with General Signal States, IEEE Trans. Inform. Theory, 1998, vol. 44, no. 1, pp. 269–273.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Hayashi, M. and Nagaoka, H., General Formulas for Capacity of Classical-Quantum Channels, IEEE Trans. Inform. Theory, 2003, vol. 49, no. 7, pp. 1753–1768.CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Burnashev, M.V. and Holevo, A.S., On the Reliability Function for a Quantum Communication Channel, Probl. Peredachi Inf., 1998, vol. 34, no. 2, pp. 3–15 [Probl. Inf. Trans. (Engl. Transl.), 1998, vol. 34, no. 2, pp. 97–107].MATHMathSciNetGoogle Scholar
  9. 9.
    Holevo, A.S., Reliability Function of General Classical-Quantum Channel, IEEE Trans. Inform. Theory, 2000, vol. 46, no. 6, pp. 2256–2261.CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Hayashi, M., Error Exponent in Asymmetric Quantum Hypothesis Testing and Its Application to Classical-Quantum Channel Coding, Phys. Rev. A, 2007, vol. 76, no. 6, pp. 062301.CrossRefGoogle Scholar
  11. 11.
    Dalai, M., Sphere Packing Bound for Quantum Channels, in Proc. 201. IEEE Int. Sympos. on Information Theory (ISIT’2012), Cambridge, MA, USA, July 1–6, 2012, pp. 160–164.CrossRefGoogle Scholar
  12. 12.
    Dalai, M., Lower Bounds on the Probability of Error for Classical and Classical-Quantum Channels, IEEE Trans. Inform. Theory, 2013, vol. 59, no. 12, pp. 8027–8056.CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Cover, T.M. and Thomas, J.A., Elements of Information Theory, New York: Wiley, 1991.CrossRefMATHGoogle Scholar
  14. 14.
    Vazquez-Vilar, G., Multiple Quantum Hypothesis Testing Expressions and Classical-Quantum Channel Converse Bounds, in Proc. 201. IEEE Int. Sympos. on Information Theory (ISIT’2016), Barcelona, Spain, July 10–15, 2016, pp. 2854–2857.Google Scholar
  15. 15.
    Shannon, C.E., Certain Results in Coding Theory for Noisy Channels, Inform. Control, 1957, vol. 1, pp. 6–25.CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Holevo, A.S., Coding Theorems for Quantum Channels, arXiv:quant-ph/9809023v1, 1998.MATHGoogle Scholar
  17. 17.
    Wilde, M.M., Quantum Information Theory, Cambridge, UK: Cambridge Univ. Press, 2013.CrossRefGoogle Scholar
  18. 18.
    Shamai, S. and Sason, I., Variations on the Gallager Bounds, Connections, and Applications, IEEE Trans. Inform. Theory, 2002, vol. 48. no. 12, pp. 3029–3051.CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Audenaert, K.M.R., Calsamiglia, J., Mu˜noz-Tapia, R., Bagan, E., Masanes, L., Acin, A., and Verstraete, F., Discriminating States: The Quantum Chernoff Bound, Phys. Rev. Lett., 2007, vol. 98, no. 16, pp. 160501.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Department of Information EngineeringUniversity of BresciaBresciaItaly

Personalised recommendations