Problems of Information Transmission

, Volume 53, Issue 1, pp 55–72 | Cite as

Linear algorithm for minimal rearrangement of structures

Large Systems

Abstract

We propose a linear time and linear space algorithm which constructs a minimal sequence of operations rearranging one structure (directed graph of cycles and paths) into another. Structures in such a sequence may have a varying number of edges; a list of operations is fixed and includes deletion and insertion of a fragment of a structure. We give a complete proof that the algorithm is correct, i.e., finds the corresponding minimum.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blanchette, M., Kunisawa, T., and Sankoff, D., Gene Order Breakpoint Evidence in Animal Mitochondrial Phylogeny, J. Mol. Evol., 1999, vol. 49, no. 2, pp. 193–203.CrossRefGoogle Scholar
  2. 2.
    Lyubetsky, V.A., Gershgorin, R.A., Seliverstov, A.V., and Gorbunov, K.Yu., Algorithms for Reconstruction of Chromosomal Structures, BMC Bioinformatics, 2016, vol. 17, Research Article40.Google Scholar
  3. 3.
    Yancopoulos, S., Attie, O., and Friedberg, R., Efficient Sorting of Genomic Permutations by Translocation, Inversion and Block Interchange, Bioinformatics, 2005, vol. 21, no. 16, pp. 3340–3346.Google Scholar
  4. 4.
    Hannenhalli, S. and Pevzner, P.A., Transforming Men into Mice (Polynomial Algorithm for Genomic Distance Problem), in Proc. 36th Annual Sympos. on Foundations of Computer Science (FOCS’95), Milwaukee, WI, USA, Oct. 23–25, 1995, pp. 581–592.Google Scholar
  5. 5.
    Bergeron, A., Mixtacki, J., and Stoye, J., A Unifying View of Genome Rearrangements, Algorithms in Bioinformatics (Proc. 6th Int. Workshop, WABI’2006, Zurich, Switzerland, Sept. 11–13, 2006), Bucher, P. and Moret, B.M.E., Eds., Lect. Notes Comp. Sci., vol. 4175, Berlin: Springer, 2006, pp. 163–173.CrossRefGoogle Scholar
  6. 6.
    Braga, M.D.V., Willing, E., and Stoye, J., Genomic Distance with DCJ and Indels, Algorithms in Bioinformatics (Proc. 10th Int. Workshop, WABI’2010, Liverpool, UK, Sept. 6–8, 2010), Moulton, V. and Singh, M., Eds., Lect. Notes Bioinformat., vol. 6293, Berlin: Springer, 2010, pp. 90–101.Google Scholar
  7. 7.
    Braga, M.D.V., Willing, E., and Stoye, J., Double Cut and Join with Insertions and Deletions, J. Comput. Biol., 2011, vol. 18, no. 9, pp. 1167–1184.MathSciNetCrossRefGoogle Scholar
  8. 8.
    da Silva, P.H., Braga, M.D.V., Machado, R., and Dantas, S., DCJ-indel Distance with Distinct Operation Costs, Algorithms in Bioinformatics (Proc. 12th Int. Workshop, WABI’2012, Ljubljana, Slovenia, Sept. 10–12, 2012), Raphael, B.J. and Tang, J., Eds., Lect. Notes Bioinformat., vol. 7534, Berlin: Springer, 2012, pp. 378–390.Google Scholar
  9. 9.
    Compeau, P.E.C., A Simplified View of DCJ-Indel Distance, Algorithms in Bioinformatics (Proc. 12th Int. Workshop, WABI’2012, Ljubljana, Slovenia, Sept. 10–12, 2012), Raphael, B.J. and Tang, J., Eds., Lect. Notes Bioinformat., vol. 7534, Berlin: Springer, 2012, pp. 365–377.Google Scholar
  10. 10.
    Compeau, P.E.C., DCJ-Indel Sorting Revisited, Algorithms Mol. Biol., 2013, vol. 8, Research Article6.Google Scholar
  11. 11.
    Compeau, P.E.C., A Generalized Cost Model for DCJ-Indel Sorting, Algorithms in Bioinformatics (Proc. 14th Int. Workshop, WABI’2014, Wro©law, Poland, Sept. 8–10, 2014), Brown, D.G. and Morgenstern, B., Eds., Lect. Notes Bioinformat., vol. 8701, Berlin: Springer, 2014, pp. 38–51.Google Scholar
  12. 12.
    Gorbunov, K.Yu., Gershgorin, R.A., and Lyubetsky, V.A., Rearrangement and Inference of Chromosome Structures, Molekulyarnaya Biologiya, 2015, vol. 49, no. 3, pp. 372–383 [Mol. Biol. (Engl. Transl.), 2015, vol. 49, no. 3, pp. 327–338].Google Scholar
  13. 13.
    Alekseyev, M.A. and Pevzner, P.A., Multi-Break Rearrangements and Chromosomal Evolution, Theor. Comput. Sci., 2008, no. 395, pp. 2–3.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Alekseyev, M.A., Multi-Break Rearrangements and Breakpoint Re-uses: From Circular to Linear Genomes, J. Comput. Biol., 2008, vol. 15, no. 8, pp. 1117–1131.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gershgorin, R.A., Gorbunov, K.Yu., Seliverstov, A.V., and Lyubetsky, V.A., Evolution of Chromosome Structures, in Proc. 39th IITP RAS Interdisciplinary Conference & School on Information Technology and Systems 2015 (ITaS’2015), Sochi, Russia, Sept. 7–11, 2015, pp. 105–120.Google Scholar
  16. 16.
    Gorbunov, K.Yu. and Lyubetsky, V.A., Problems and Algorithms Related to Chromosome Rearrangements, Sovremennye Informatsionnye Tekhnologii i IT-obrazovanie, 2013, vol. 9, pp. 764–768.Google Scholar
  17. 17.
    Lyubetsky, V.A. and Gorbunov, K.Yu., Chromosome Structures Reconstruction, Molecular Phylogenetics: Contributions to the 4th Moscow Int. Conf. on Molecular Phylogenetics (MolPhy-4), Moscow, Russia, Sept. 23–26, 2014, Moscow: Torus-Press, 2014, p.42.Google Scholar
  18. 18.
    Lyubetsky, V.A., Seliverstov, A.V., and Gorbunov, K.Yu., Rearrangement of Chromosomes: Problems, Algorithms, Databases, and Gene Expression Regulations, The 9th Int. Conf. on Bioinformatics of Genome Regulation and Structure\Systems Biology (BGRS\SB’2014), Novosibirsk, Russia, June 23–28, 2014, oral presentation.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Kharkevich Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations