Problems of Information Transmission

, Volume 53, Issue 1, pp 51–54 | Cite as

Remark on balanced incomplete block designs, near-resolvable block designs, and q-ary constant-weight codes

  • L. A. Bassalygo
  • V. A. Zinoviev
Coding Theory


We prove that any balanced incomplete block design B(v, k, 1) generates a nearresolvable balanced incomplete block design NRB(v, k − 1, k − 2). We establish a one-to-one correspondence between near-resolvable block designs NRB(v, k −1, k −2) and the subclass of nonbinary (optimal, equidistant) constant-weight codes meeting the generalized Johnson bound.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beth, T., Jungnickel, D., and Lenz, H., Design Theory, Cambridge, UK; New York: Cambridge Univ. Press, 1999, 2nd ed.CrossRefMATHGoogle Scholar
  2. 2.
    Semakov, N.V. and Zinoviev, V.A., Constant-Weight Codes and Tactical Configurations, Probl. Peredachi Inf., 1969, vol. 5, no. 3, pp. 28–36 [Probl. Inf. Trans. (Engl. Transl.), 1969, vol. 5, no. 3, pp. 22–28].MATHGoogle Scholar
  3. 3.
    Johnson, S.M., A New Upper Bound for Error-Correcting Codes, IRE Trans. Inf. Theory, 1962, vol. 8, no. 3, pp. 203–207.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Abel, R.J.R., Ge, G., and Yin, J., Resolvable and Near-Resolvable Designs, Sec. VI.7 of Handbook of Combinatorial Designs, Colbourn, C.J. and Dinitz, J.H., Eds., Boca Raton: Chapman & Hall, 2007, 2nd ed., pp. 124–132.Google Scholar
  5. 5.
    Bassalygo, L.A., New Upper Bounds for Error Correcting Codes, Probl. Peredachi Inf., 1965, vol. 1, no. 4, pp. 41–44 [Probl. Inf. Trans. (Engl. Transl.), 1965, vol. 1, no. 4, pp. 32–35].MATHMathSciNetGoogle Scholar
  6. 6.
    Furino, S., Miao, Y., and Yin, J., Frames and Resolvable Designs: Uses, Constructions, and Existence, Boca Raton: CRC Press, 1996, Sec. 5.1, pp. 199–202.MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Kharkevich Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations