Advertisement

Problems of Information Transmission

, Volume 53, Issue 1, pp 42–50 | Cite as

Optimal conflict-avoiding codes for 3, 4 and 5 active users

  • T. Baicheva
  • S. Topalova
Coding Theory

Abstract

Conflict-avoiding codes are used in multiple-access collision channels without feedback. The number of codewords in a conflict-avoiding code is the number of potential users of the channel. That is why codes with maximum cardinality (optimal codes) for given parameters are of interest. In this paper we classify, up to multiplier equivalence, all optimal conflict-avoiding codes of weights 3, 4, and 5 and given small lengths. We also determine some previously unknown values of the maximum cardinality of conflict-avoiding codes of weights 4 and 5.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chung, F.R.K., Salehi, J.A., and Wei, V.K., Optical Orthogonal Codes: Design, Analysis, and Applications, IEEE Trans. Inform. Theory, 1989, vol. 35, no. 3, pp. 595–604.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Levenshtein, V.I. and Tonchev, V.D., Optimal Conflict-Avoiding Codes for Three Active Users, in Proc. 2005 IEEE Int. Sympos. on Information Theory (ISIT’2005), Adelaide, Australia, Sept. 4–9, 2005, pp. 535–537.CrossRefGoogle Scholar
  3. 3.
    Levenshtein, V.I., Conflict-Avoiding Codes and Cyclic Triple Systems, Probl. Peredachi Inf., 2007, vol. 43, no. 3, pp. 39–53 [Probl. Inf. Trans. (Engl. Transl.), 2007, vol. 43, no. 3, pp. 199–212].MathSciNetMATHGoogle Scholar
  4. 4.
    Jimbo, M., Mishima, M., Janiszewski, S., Teymorian, A.Y., and Tonchev, V.D., On Conflict-Avoiding Codes of Length n = 4m for Three Active Users, IEEE Trans. Inform. Theory, 2007, vol. 53, no. 8, pp. 2732–2742.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Mishima, M., Fu, H.-L., and Uruno, S., Optimal Conflict-Avoiding Codes of Length n = 0 (mod 16) and Weight 3, Des. Codes Cryptogr., 2009, vol. 52, no. 3, pp. 275–291.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Fu, H.-L., Lin, Y.-Y., and Mishima, M., Optimal Conflict-Avoiding Codes of Even Length and Weight 3, IEEE Trans. Inform. Theory, 2010, vol. 56, no. 11, pp. 5747–5756.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Wu, S.-L. and Fu, H.-L., Optimal Tight Equi-difference Conflict-Avoiding Codes of Length n = 2k ± 1 and Weight 3, J. Combin. Des., 2013, vol. 21, no. 6, pp. 223–231.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Momihara, K., Necessary and Sufficient Conditions for Tight Equi-difference Conflict-Avoiding Codes of Weight Three, Des. Codes Cryptogr., 2007, vol. 45, no. 3, pp. 379–390.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Momihara, K., Müler, M., Satoh, J., and Jimbo, M., Constant Weight Conflict-Avoiding Codes, SIAM J. Discrete Math., 2007, vol. 21, no. 4, pp. 959–979.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Fu, H.-L., Lo, Y.-H., and Shum, K.W., Optimal Conflict-Avoiding Codes of Odd Length and Weight Three, Des. Codes Cryptogr., 2014, vol. 72, no. 2, pp. 289–309.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Shum, K.W. and Wong, W.S., A Tight Asymptotic Bound on the Size of Constant-Weight Conflict-Avoiding Codes, Des., Codes Cryptogr., 2010, vol. 57, no. 1, pp. 1–14.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Shum, K.W., Wong, W.S., and Chen, C.S., A General Upper Bound on the Size of Constant-Weight Conflict-Avoiding Codes, IEEE Trans. Inform. Theory, 2010, vol. 56, no. 7, pp. 3265–3276.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Tonchev, V.D., Tables of Conflict-Avoiding Codes. Available online at http://www.math.mtu.edu/~tonchev/CAC.html.Google Scholar
  14. 14.
    Bassalygo, L.A. and Pinsker, M.S., Restricted Asynchronous Multiple Access, Probl. Peredachi Inf., 1983, vol. 19, no. 4, pp. 92–96.MATHGoogle Scholar
  15. 15.
    Levenshtein, V.I., Conflict-Avoiding Codes for Many Active Users, in Proc. 14th Int. Conf. on Problems of Theoretical Cybernetics, Penza, Russia, May 23–28, 2005, Moscow: Izd. Mekh.-Mat. MGU, 2005, p.86.Google Scholar
  16. 16.
    Lin, Y., Mishima, M., Satoh, J., and Jimbo, M., Optimal Equi-difference Conflict-Avoiding Codes of Odd Length and Weight Three, Finite Fields Appl., 2014, vol. 26, pp. 49–68.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Ma, W., Zhao, C., and Shen, D., New Optimal Constructions of Conflict-Avoiding Codes of Odd Length and Weight 3, Des. Codes Cryptogr., 2014, vol. 73, no. 3, pp. 791–804.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Baicheva, T. and Topalova, S., Optimal (v, 4, 2, 1) Optical Orthogonal Codes with Small Parameters, J. Combin. Des., 2012, vol. 20, no. 2, pp. 142–160.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Baicheva, T. and Topalova, S., Optimal (v, 5, 2, 1) Optical Orthogonal Codes of Small v, Appl. Algebra Engrg. Comm. Comput., 2013, vol. 24, no. 3, pp. 165–177.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Baicheva, T. and Topalova, S., Classification of Maximal Optical Orthogonal Codes of Weight 3 and Small Lengths, Serdica J. Comput., 2015, vol. 9, no. 1, pp. 83–92.MathSciNetGoogle Scholar
  21. 21.
    Baicheva, T. and Topalova, S., Maximal (v, 4, 3, 1) Optical Orthogonal Codes for Asynchronous Transmission, in Proc. Int. Sci. Jubilee Conf. “25 Years Faculty of Mathematics and Informatics,” Veliko Tarnovo, Bulgaria, Nov. 27–28, 2015, pp. 80–85.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Institute of Mathematics and InformaticsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations