Advertisement

Problems of Information Transmission

, Volume 53, Issue 1, pp 1–29 | Cite as

Some “goodness” properties of LDA lattices

  • S. Vatedka
  • N. Kashyap
Information Theory

Abstract

We study some structural properties of Construction-A lattices obtained from low density parity check codes over prime fields. Such lattices are called low density Construction-A (LDA) lattices, and permit low-complexity belief propagation decoding for transmission over Gaussian channels. It has been shown that LDA lattices achieve the capacity of the power constrained additive white Gaussian noise (AWGN) channel with closest lattice-point decoding, and simulations suggested that they perform well under belief propagation decoding. We continue this line of work and prove that these lattices are good for packing and mean squared error quantization and that their duals are good for packing. With this, we can conclude that codes constructed using nested LDA lattices can achieve the capacity of the power constrained AWGN channel, the capacity of the dirty paper channel, the rates guaranteed by the computeand-forward protocol, and the best known rates for bidirectional relaying with perfect secrecy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Erez, U. and Zamir, R., Achieving 1/2 log(1+SNR) on the AWGN Channel with Lattice Encoding and Decoding, IEEE Trans. Inform. Theory, 2004, vol. 50, no. 10, pp. 2293–2314.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Erez, U., Shamai, S., and Zamir, R., Capacity and Lattice Strategies for Canceling Known Interference, IEEE Trans. Inform. Theory, 2005, vol. 51, no. 11, pp. 3820–3833.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bresler, G., Parekh, A., and Tse, D.N.C., The Approximate Capacity of the Many-to-One and One-to-Many Gaussian Interference Channels, IEEE Trans. Inform. Theory, 2010, vol. 56, no. 9, pp. 4566–4592.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Jafar, S.A. and Vishwanath, S., Generalized Degrees of Freedom of the Symmetric Gaussian K User Interference Channel, IEEE Trans. Inform. Theory, 2010, vol. 56, no. 7, pp. 3297–3303.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Wilson, M.P., Narayanan, K., Pfister, H.D., and Sprintson, A., Joint Physical Layer Coding and Network Coding for Bidirectional Relaying, IEEE Trans. Inform. Theory, 2010, vol. 56, no. 11, pp. 5641–5654.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Nazer, B. and Gastpar, M., Compute-and-Forward: Harnessing Interference through Structured Codes, IEEE Trans. Inform. Theory, 2011, vol. 57, no. 10, pp. 6463–6486.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Baik, I.-J. and Chung, S.-Y., Network Coding for Two-Way Relay Channels Using Lattices, in Proc. IEEE Int. Conf. on Communications (ICC’08), Beijing, China, May 19–23, 2008, pp. 3898–3902.Google Scholar
  8. 8.
    Belfiore, J.-C. and Oggier, F., Secrecy Gain: A Wiretap Lattice Code Design, in Proc. 2010 Int. Sympos. on Information Theory and Its Applications (ISITA’2010), Taichung, Taiwan, Oct. 17–20, 2010, pp. 174–178.CrossRefGoogle Scholar
  9. 9.
    Ling, C., Luzzi, L., Belfiore, J.-C., and Stehlé, D., Semantically Secure Lattice Codes for the Gaussian Wiretap Channel, IEEE Trans. Inform. Theory, 2014, vol. 60, no. 10, pp. 6399–6416.MathSciNetCrossRefGoogle Scholar
  10. 10.
    He, X. and Yener, A., Strong Secrecy and Reliable Byzantine Detection in the Presence of an Untrusted Relay, IEEE Trans. Inform. Theory, 2013, vol. 59, no. 1, pp. 177–192.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Vatedka, S., Kashyap, N., and Thangaraj, A., Secure Compute-and-Forward in a Bidirectional Relay, IEEE Trans. Inform. Theory, 2015, vol. 61, no. 5, pp. 2531–2556.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zamir, R., Lattice Coding for Signals and Networks: A Structured Coding Approach to Quantization, Modulation, and Multi-User Information Theory, Cambridge: Cambridge Univ. Press, 2014.CrossRefMATHGoogle Scholar
  13. 13.
    Poltyrev, G., On Coding without Restrictions for the AWGN Channel, IEEE Trans. Inform. Theory, 1994, vol. 40, no. 2, pp. 409–417.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Conway, J.H. and Sloane, N.J.A., Sphere Packings, Lattices, and Groups, New York: Springer-Verlag, 1988.CrossRefMATHGoogle Scholar
  15. 15.
    Erez, U., Litsyn, S., and Zamir, R., Lattices Which Are Good for (Almost) Everything, IEEE Trans. Inform. Theory, 2005, vol. 51, no. 10, pp. 3401–3416.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    di Pietro, N., Boutros, J.J., Zémor, G., and Brunel, L., Integer Low-Density Lattices Based on Construction A, in Proc. 2012 IEEE Information Theory Workshop (ITW’2012), Lausanne, Switzerland, Sept. 3–7, 2012, pp. 422–426.CrossRefGoogle Scholar
  17. 17.
    di Pietro, N., On Infinite and Finite Lattice Constellations for the Additive White Gaussian Noise Channel, PhD Thesis, Inst. Math. Bordeaux, Univ. Bordeaux, Bordeaux, France, 2014. Available at https://tel.archives-ouvertes.fr/tel-01135575/document.Google Scholar
  18. 18.
    Tunali, N.E., Narayanan, K.R., and Pfister, H.D., Spatially-Coupled Low Density Lattices Based on Construction A with Applications to Compute-and-Forward, in Proc. 2013 IEEE Information Theory Workshop (ITW’2013), Sevilla, Spain, Sept. 9–13, 2013, pp. 1–5.CrossRefGoogle Scholar
  19. 19.
    di Pietro, N., Boutros, J.J., Zémor, G., and Brunel, L., New Results on Low-Density Integer Lattices, in Proc. 2013 Information Theory and Applications Workshop (ITA’2013), San Diego, CA, Feb. 10–15, 2013, pp. 39–44.Google Scholar
  20. 20.
    di Pietro, N., Zémor, G., and Boutros, J.J., LDA Lattices without Dithering Achieve Capacity on the Gaussian Channel, arXiv:1603.02863 [cs.IT], 2016.Google Scholar
  21. 21.
    Sommer, N., Feder, M., and Shalvi, O., Low-Density Lattice Codes, IEEE Trans. Inform. Theory, 2008, vol. 54, no. 4, pp. 1561–1585.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Yan, Y., Ling, C., and Wu, X., Polar Lattices: Where Arikan Meets Forney, in Proc. 2013 IEEE Int. Sympos. on Information Theory (ISIT’2013), Istanbul, Turkey, July 7–12, 2013, pp. 1292–1296.CrossRefGoogle Scholar
  23. 23.
    Minkowski, H., Gesammelte Abhandlungen, vol. 2, Leipzig: B.G. Teubner, 1911.MATHGoogle Scholar
  24. 24.
    Hlawka, E., Zur Geometrie der Zahlen, Math. Z., 1943, vol. 49, pp. 285–312.MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Rogers, C.A., Packing and Covering, Cambridge: Cambridge Univ. Press, 1964.MATHGoogle Scholar
  26. 26.
    Ordentlich, O. and Erez, U., A Simple Proof for the Existence of “Good” Pairs of Nested Lattices, IEEE Trans. Inform. Theory, 2016, vol. 62, no. 8, pp. 4439–4453.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Richardson, T. and Urbanke, R., Modern Coding Theory, Cambridge: Cambridge Univ. Press, 2008.CrossRefMATHGoogle Scholar
  28. 28.
    Bassalygo, L.A. and Pinsker, M.S., Complexity of an Optimum Nonblocking Switching Network without Reconnections, Probl. Peredachi Inf., 1973, vol. 9, no. 1, pp. 84–87 [Probl. Inf. Trans. (Engl. Transl.), 1973, vol. 9, no. 1, pp. 64–66].Google Scholar
  29. 29.
    Bassalygo, L.A., Asymptotically Optimal Switching Circuits, Probl. Peredachi Inf., 1981, vol. 17, no. 3, pp. 81–88 [Probl. Inf. Trans. (Engl. Transl.), 1981, vol. 17, no. 3, pp. 206–211].MathSciNetMATHGoogle Scholar
  30. 30.
    Sipser, M. and Spielman, D.A., Expander Codes, IEEE Trans. Inform. Theory, 1996, vol. 42, no. 6, part 1, pp. 1710–1722.MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Hoory, S., Linial, N., and Wigderson, A., Expander Graphs and Their Applications, Bull. Amer. Math. Soc. (N.S.), 2006, vol. 43, no. 4, pp. 439–561.MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    di Pietro, N., Zémor, G., and Boutros, J.J., New Results on Construction A Lattices Based on Very Sparse Parity-Check Matrices, in Proc. 2013 IEEE Int. Sympos. on Information Theory (ISIT’2013), Istanbul, Turkey, July 7–12, 2013, pp. 1675–1679.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Department of Electrical Communication EngineeringIndian Institute of ScienceBengaluruIndia

Personalised recommendations