Skip to main content
Log in

Classical capacities of quantum channels with environment assistance

  • Information Theory
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

A quantum channel physically is a unitary interaction between an information carrying system and an environment, which is initialized in a pure state before the interaction. Conventionally, this state, as also the parameters of the interaction, is assumed to be fixed and known to the sender and receiver. Here, following the model introduced by us earlier [1], we consider a benevolent third party, i.e., a helper, controlling the environment state, and show how the helper’s presence changes the communication game. In particular, we define and study the classical capacity of a unitary interaction with helper, in two variants: one where the helper can only prepare separable states across many channel uses, and one without this restriction. Furthermore, two even more powerful scenarios of pre-shared entanglement between helper and receiver, and of classical communication between sender and helper (making them conferencing encoders) are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karumanchi, S., Mancini, S., Winter, A., and Yang, D., Quantum Channel Capacities with Passive Environment Assistance, IEEE Trans. Inform. Theory, 2016, vol. 62, no. 4, pp. 1733–1747.

    Article  MathSciNet  Google Scholar 

  2. Wilde, M.M., Quantum Information Theory, Cambridge: Cambridge Univ. Press, 2013.

    Book  MATH  Google Scholar 

  3. Gregoratti, M. and Werner, R.F., Quantum Lost and Found, J. Mod. Opt., 2003, vol. 50, no. 6–7, pp. 915–933.

    Article  MathSciNet  MATH  Google Scholar 

  4. Gregoratti, M. and Werner, R.F., On Quantum Error-Correction by Classical Feedback in Discrete Time, J. Math. Phys., 2004, vol. 45, no. 7, pp. 2600–2612.

    Article  MathSciNet  Google Scholar 

  5. Hayden, P. and King, C., Correcting Quantum Channels by Measuring the Environment, Quantum Inf. Comput., 2005, vol. 5, no. 2, pp. 156–160.

    MathSciNet  MATH  Google Scholar 

  6. Smolin, J.A., Verstraete, F., and Winter, A., Entanglement of Assistance and Multipartite State Distillation, Phys. Rev. A, 2005, vol. 72, no. 5, p. 052317.

    Article  Google Scholar 

  7. Winter, A., On Environment-Assisted Capacities of Quantum Channels, Markov Process. Related Fields, 2007, vol. 13, no. 2, pp. 297–314.

    MathSciNet  MATH  Google Scholar 

  8. Holevo, A.S., The Capacity of the Quantum Channel with General Signal States, IEEE Trans. Inform. Theory, 1998, vol. 44, no. 1, pp. 269–273.

    Article  MathSciNet  MATH  Google Scholar 

  9. Schumacher, B. and Westmoreland, M.D., Sending Classical Information via Noisy Quantum Channels, Phys. Rev. A, 1997, vol. 56, no. 1, pp. 131–138.

    Article  Google Scholar 

  10. Hastings, M.B., Superadditivity of Communication Capacity Using Entangled Inputs, Nat. Phys., 2009, vol. 5, no. 4, pp. 255–257.

    Article  Google Scholar 

  11. Amosov, G.G. and Mancini, S., The Decreasing Property of Relative Entropy and the Strong Superadditivity of Quantum Channels, Quantum Inf. Comput., 2009, vol. 9, no. 7, pp. 594–609.

    MathSciNet  MATH  Google Scholar 

  12. Schumacher, B. and Westmoreland, M.D., Optimal Signal Ensembles, Phys. Rev. A, 2001, vol. 63, no. 2, p. 022308.

    Article  MathSciNet  Google Scholar 

  13. Cortese, J.A., Quantum Information Theory: Classical Communication over Quantum Channels, PhD Thesis, Pasadena, CA: California Inst. of Technology, 2003. Available at http://thesis.library.caltech.edu/649/1/thesis.pdf.

    Google Scholar 

  14. Horodecki, M., Shor, P.W., and Ruskai, M.B., Entanglement Breaking Channels, Rev. Math. Phys., 2003, vol. 15, no. 6, pp. 629–641.

    Article  MathSciNet  MATH  Google Scholar 

  15. Winter, A., The Capacity of the Quantum Multiple-Access Channel, IEEE Trans. Inform. Theory, 2001, vol. 47, no. 7, pp. 3059–3065.

    Article  MathSciNet  MATH  Google Scholar 

  16. Yard, J., Hayden, P., and Devetak, I., Capacity Theorems for Quantum Multiple-Access Channels: Classical-Quantum and Quantum-Quantum Capacity Regions, IEEE Trans. Inform. Theory, 2008, vol. 54, no. 7, pp. 3091–3113.

    Article  MathSciNet  MATH  Google Scholar 

  17. Kretschmann, D., Schlingemann, D., and Werner, R.F., The Information-Disturbance Tradeoff and the Continuity of Stinespring’s Representation, IEEE Trans. Inform. Theory, 2008, vol. 54, no. 4, pp. 1708–1717.

    Article  MathSciNet  MATH  Google Scholar 

  18. Ohya, M. and Petz, D., Quantum Entropy and Its Use, Berlin: Springer-Verlag, 1993, 2nd ed.

    Book  MATH  Google Scholar 

  19. Leung, D. and Smith, G., Continuity of Quantum Channel Capacities, Comm. Math. Phys., 2009, vol. 292, no. 1, pp. 201–215.

    Article  MathSciNet  MATH  Google Scholar 

  20. Winter, A., Tight Uniform Continuity Bounds for Quantum Entropies: Conditional Entropy, Relative Entropy Distance and Energy Constraints, arXiv:1507.07775v6 [quant-ph], 2015.

    Google Scholar 

  21. Maassen, H. and Uffink, J.B.M., Generalized Entropic Uncertainty Relations, Phys. Rev. Lett., 1988, vol. 60, no. 12, pp. 1103–1106.

    Article  MathSciNet  Google Scholar 

  22. Chen, J., Ji, Z., Kribs, D.W., and Zeng, B., Minimum Entangling Power is Close to Its Maximum, arXiv:1210.1296 [quant-ph], 2012.

    Google Scholar 

  23. Hayden, P., Leung, D.W., and Winter, A., Aspects of Generic Entanglement, Comm. Math. Phys., 2006, vol. 265, no. 1, pp. 95–117.

    Article  MathSciNet  MATH  Google Scholar 

  24. Deschapms, J., Nechita, I., and Pellegrini, C., On Some Classes of Bipartite Unitary Operators, arXiv: 1509.06543 [quant-ph], 2015.

    Google Scholar 

  25. D’Ariano, G.M., Lo Presti, P., and Paris, M.G.A., Using Entanglement Improves the Precision of Quantum Measurements, Phys. Rev. Lett., 2001, vol. 87, no. 27, p. 270404.

    Article  Google Scholar 

  26. Willems, F.M.J., The Discrete Memoryless Multiple Access Channel with Partially Cooperating Encoders, IEEE Trans. Inform. Theory, 1983, vol. 29, no. 3, pp. 441–445.

    Article  MathSciNet  MATH  Google Scholar 

  27. Kramer, G., Marić, I., and Yates, R.D., Cooperative Communications, Found. Trends Network., 2006, vol. 1, no. 3–4, pp. 271–425.

    Article  Google Scholar 

  28. Boche, H. and Nötzel, J., The Classical-Quantum Multiple Access Channel with Conferencing Encoders and with Common Messages, Quantum Inf. Process., 2014, vol. 13, no. 12, pp. 2595–2617.

    Article  MathSciNet  MATH  Google Scholar 

  29. Shor, P.W., Equivalence of Additivity Questions in Quantum Information Theory, Comm. Math. Phys., 2004, vol. 246, no. 3, pp. 453–472.

    Article  MathSciNet  MATH  Google Scholar 

  30. Sanpera, A., Tarrach, R., and Vidal, G., Local Description of Quantum Inseparability, Phys. Rev. A (3), 1998, vol. 58, no. 2, pp. 826–830.

    Article  MathSciNet  Google Scholar 

  31. Alicki, R. and Fannes, M., Continuity of Quantum Conditional Information, J. Phys. A, 2004, vol. 37, no. 5, pp. L55–L57.

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang, D., Distinguishability, Classical Information of Quantum Operations, arXiv:quant-ph/0504073, 2005.

    Google Scholar 

  33. Caruso, F., Giovannetti, V., Lupo, C., and Mancini, S., Quantum Channels and Memory Effects, Rev. Mod. Phys., 2014, vol. 86, no. 4, pp. 1203–1259.

    Article  Google Scholar 

  34. Kraus, B. and Cirac, J.I., Optimal Creation of Entanglement Using a Two-Qubit Gate, Phys. Rev. A, 2001, vol. 63, no. 6, p. 062309.

    Article  MathSciNet  Google Scholar 

  35. Hill, S. and Wootters, W.K., Entanglement of a Pair of Quantum Bits, Phys. Rev. Lett., 1997, vol. 78, no. 26, pp. 5022–5025.

    Article  Google Scholar 

  36. Hammerer, K., Vidal, G., and Cirac, J.I., Characterization of Nonlocal Gates, Phys. Rev. A, 2002, vol. 66, no. 6, p. 062321.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Karumanchi.

Additional information

Original Russian Text © S. Karumanchi, S. Mancini, A. Winter, D. Yang, 2016, published in Problemy Peredachi Informatsii, 2016, Vol. 52, No. 3, pp. 17–44.

The work was done when the author was with the School of Science and Technology, University of Camerino, Camerino, Italy, and INFN–Sezione Perugia, Perugia, Italy.

Supported by the European Commission, STREP “RAQUEL,” the European Research Council, advanced grant “IRQUAT,” the Spanish MINECO, project no. FIS2013-40627-P, with the support of FEDER funds, as well as by the Generalitat de Catalunya CIRIT, project no. 2014-SGR-966.

Supported by the European Research Council, advanced grant “IRQUAT,” and the NSFC, grant no. 11375165.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karumanchi, S., Mancini, S., Winter, A. et al. Classical capacities of quantum channels with environment assistance. Probl Inf Transm 52, 214–238 (2016). https://doi.org/10.1134/S0032946016030029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946016030029

Navigation