Skip to main content
Log in

Strong divergence for system approximations

  • Methods of Signal Processing
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

In this paper we analyze approximation of stable linear time-invariant systems, like the Hilbert transform, by sampling series for bandlimited functions in the Paley–Wiener space PW 1π . It is known that there exist systems and functions such that the approximation process is weakly divergent, i.e., divergent for certain subsequences. Here we strengthen this result by proving strong divergence, i.e., divergence for all subsequences. Further, in case of divergence, we give the divergence speed. We consider sampling at Nyquist rate as well as oversampling with adaptive choice of the kernel. Finally, connections between strong divergence and the Banach–Steinhaus theorem, which is not powerful enough to prove strong divergence, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shannon, C.E. Communication in the Presence of Noise, Proc. IRE, 1949, vol. 37, no. 1, pp. 10–21.

    Article  MathSciNet  Google Scholar 

  2. Jerri, A.J. The Shannon Sampling Theorem—Its Various Extensions and Applications: A Tutorial Review, Proc. IEEE, 1977, vol. 65, no. 11, pp. 1565–1596.

    Article  MATH  Google Scholar 

  3. Higgins, J.R. Five Short Stories about the Cardinal Series, Bull. Amer. Math. Soc., 1985, vol. 12, no. 1, pp. 45–89.

    Article  MATH  MathSciNet  Google Scholar 

  4. Butzer, P.L. Splettstößer, W., and Stens, R.L., The Sampling Theorem and Linear Prediction in Signal Analysis, Jahresber. Deutsch. Math.-Verein., 1988. vol. 90, no. 1, 70 pp.

    MathSciNet  Google Scholar 

  5. Nonuniform Sampling: Theory and Practice, Marvasti, F., Ed., New York: Kluwer Academic/Plenum Publ., 2001.

  6. Brown, J.L, On the Error in Reconstructing a Non-bandlimited Function by Means of the Bandpass Sampling Theorem, J. Math. Anal. Appl., 1967, vol. 18, no. 1, pp. 75–84; 1968, vol. 21, no. 3, p. 699.

    Article  MATH  MathSciNet  Google Scholar 

  7. Butzer, P.L. and Stens, R.L. Sampling Theory for Not Necessarily Band-limited Functions: A Historical Overview, SIAM Rev., 1992, vol. 34, no. 1, pp. 40–53.

    Article  MATH  MathSciNet  Google Scholar 

  8. Higgins, J.R. Sampling Theory in Fourier and Signal Analysis: Foundations, Oxford: Clarendon; New York: Oxford Univ. Press, 1996.

    Google Scholar 

  9. Butzer, P.L. Ferreira, P.J.S.G., Higgins, J.R., Saitoh, S., Schmeisser, G., and Stens, R.L., Interpolation and Sampling: E.T. Whittaker, K. Ogura and Their Followers, J. Fourier Anal. Appl., 2011, vol. 17, no. 2, pp. 320–354.

    Article  MATH  MathSciNet  Google Scholar 

  10. Boche, H. and Mönich, U.J. Sampling of Deterministic Signals and Systems, IEEE Trans. Signal Process., 2011, vol. 59, no. 5, pp. 2101–2111.

    Article  MathSciNet  Google Scholar 

  11. Boche, H. and Pohl, V. System Approximations and Generalized Measurements in Modern Sampling Theory, Sampling Theory, a Renaissance: Compressive Sensing and Other Developments, Pfander, G.E., Ed., Boston: Birkhäuser, 2015.

    Google Scholar 

  12. Banach, S. and Steinhaus, H. Sur le principe de la condensation de singularités, Fund. Math., 1927, vol. 9, pp. 50–61.

    MATH  Google Scholar 

  13. Banach, S. Über die Baire’sche Kategorie gewisser Funktionenmengen, Studia Math., 1931, vol. 3, no. 1, pp. 174–179.

    Google Scholar 

  14. Stein, E.M. On Limits of Sequences of Operators, Ann. Math., 1961, vol. 74, no. 1, pp. 140–170.

    Article  MATH  Google Scholar 

  15. Dickmeis, W. and Nessel, R.J., A Quantitative Condensation of Singularities on Arbitrary Sets, J. Approx. Theory, 1985, vol. 43, no. 4, pp. 383–393.

    Article  MATH  MathSciNet  Google Scholar 

  16. Dickmeis, W. Nessel, R.J., and van Wickeren, E., On Nonlinear Condensation Principles with Rates, Manuscripta Math., 1985, vol. 52, no. 1–3, pp. 1–20.

    Article  MATH  MathSciNet  Google Scholar 

  17. Velasco, M.V. and Villena, A.R. A Random Banach–Steinhaus Theorem, Proc. Amer. Math. Soc., 1995, vol. 123, no. 8, pp. 2489–2497.

    Article  MATH  MathSciNet  Google Scholar 

  18. Jachymski, J. A Nonlinear Banach–Steinhaus Theorem and Some Meager Sets in Banach Spaces, Studia Math., 2005, vol. 170, no. 3, pp. 303–320.

    Article  MATH  MathSciNet  Google Scholar 

  19. Boche, H. and Farrell, B. Strong Divergence of Reconstruction Procedures for the Paley–Wiener Space PW 1π and the Hardy Space H1, J. Approx. Theory, 2014, vol. 183, pp. 98–117.

    Article  MATH  MathSciNet  Google Scholar 

  20. Erdős, P. On Divergence Properties of the Lagrange Interpolation Parabolas, Ann. Math., 1941, vol. 42, no. 1, pp. 309–315.

    Article  Google Scholar 

  21. Erdős, P. Corrections to Two of My Papers, Ann. Math., 1943, vol. 44, no. 4, pp. 647–651.

    Article  Google Scholar 

  22. Boche, H. and Mönich, U.J. Signal and System Approximation from General Measurements, New Perspectives on Approximation and Sampling Theory: Festschrift in Honor of Paul Butzer’s 85th Birthday, Zayed, A.I. and Schmeisser, G., Eds., Cham: Birkhäuser, 2014, pp. 115–148.

    Google Scholar 

  23. Boche, H. and Mönich, U.J. Sampling-type Representations of Signals and Systems, Sampl. Theory Signal Image Process., 2010, vol. 9, no. 1–3, pp. 119–153.

    MATH  MathSciNet  Google Scholar 

  24. Boche, H. and Mönich, U.J. Global and Local Approximation Behavior of Reconstruction Processes for Paley–Wiener Functions, Sampl. Theory Signal Image Process., 2009, vol. 8, no. 1, pp. 23–51.

    MATH  MathSciNet  Google Scholar 

  25. Fink, L.M. Relations between the Spectrum and Instantaneous Frequency of a Signal, Probl. Peredachi Inf., 1966, vol. 2, no. 4, pp. 26–38 [Probl. Inf. Trans. (Engl. Transl.), 1966, vol. 2, no. 4, pp. 11–21].

    Google Scholar 

  26. Korzhik, V.I. The Extended Hilbert Transformation and Its Application in Signal Theory, Probl. Peredachi Inf., 1969, vol. 5, no. 4, pp. 3–18 [Probl. Inf. Trans. (Engl. Transl.), 1969, vol. 5, no. 4, pp. 1–14].

    Google Scholar 

  27. Vakman, D.E. On the Definition of Concepts of Amplitude, Phase and Instantaneous Frequency of a Signal, Radiotekhnika i Elektronika, 1972, vol. 17, no. 5, pp. 972–978 [Radio Eng. Electron. Phys. (Engl. Transl.), 1972, vol. 17, no. 5, pp. 754–759].

    Google Scholar 

  28. Gabor, D., Theory of Communication, J. Inst. Electr. Eng. 3, 1946, vol. 93, no. 26, pp. 429–457.

    Google Scholar 

  29. Huang, N.E. Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., and Liu, H.H., The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 1998, vol. 454, no. 1971, pp. 903–995.

    Article  MATH  MathSciNet  Google Scholar 

  30. Huang, N.E. Shen, Z., and Long, S.R., A New View of Nonlinear Water Waves: The Hilbert Spectrum, Annu. Rev. Fluid Mech., 1999, vol. 31, no. 1, pp. 417–457.

    Article  MathSciNet  Google Scholar 

  31. Huang, N.E. Wu, M.-L.C., Long, S.R., Shen, S.S.P., Qu, W., Gloersen, P., and Fan, K.L., A Confidence Limit for the Empirical Mode Decomposition and Hilbert Spectral Analysis, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 2003, vol. 459, no. 2037, pp. 2317–2345.

    Article  MATH  MathSciNet  Google Scholar 

  32. Pohl, V. and Boche, H. Advanced Topics in System and Signal Theory: A Mathematical Approach, Berlin: Springer, 2009.

    Google Scholar 

  33. Boche, H. and Mönich, U.J. Behavior of the Quantization Operator for Bandlimited, Nonoversampled Signals, IEEE Trans. Inform. Theory, 2010, vol. 56, no. 5, pp. 2433–2440.

    Article  Google Scholar 

  34. Butzer, P.L. Engels, W., Ries, S., and Stens, R.L., The Shannon Sampling Series and the Reconstruction of Signals in Terms of Linear, Quadratic and Cubic Splines, SIAM J. Appl. Math., 1986, vol. 46, no. 2, pp. 299–323.

    Article  MATH  MathSciNet  Google Scholar 

  35. Engels, W. Stark, E.L., and Vogt, L., Optimal Kernels for a General Sampling Theorem, J. Approx. Theory, 1987, vol. 50, no. 1, pp. 69–83.

    Article  MATH  MathSciNet  Google Scholar 

  36. Boche, H. and Mönich, U.J. An Impossibility Result for Linear Signal Processing under Thresholding, IEEE Trans. Signal Process., 2010, vol. 58, no. 3, pp. 1082–1094.

    Article  MathSciNet  Google Scholar 

  37. Grafakos, L. Classical Fourier Analysis, New York: Springer, 2008. 2nd ed.

    Google Scholar 

  38. Boche, H. and Pohl, V. On the Calculation of the Hilbert Transform from Interpolated Data, IEEE Trans. Inform. Theory, 2008, vol. 54, no. 5, pp. 2358–2366.

    Article  MATH  MathSciNet  Google Scholar 

  39. Zygmund, A. Trigonometric Series, vol. I, Cambridge: Cambridge Univ. Press, 1988. 2nd ed.

  40. Fejér, L. A Fourier-féle sorokről, Leopold Fejér Gesammelte Arbeiten I, Turán, P., Ed., Basel: Birkhäuser, 1970, pp. 292–297.

    Google Scholar 

  41. Boche, H. and Mönich, U.J. A General Approach for Convergence Analysis of Adaptive Samplingbased Signal Processing, in Proc. 11th Int. Conf. on Sampling Theory and Applications (SampTA’2015), Washington, DC,USA, May 25–29, 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Boche.

Additional information

Original Russian Text © H. Boche, U.J. Mönich, 2015, published in Problemy Peredachi Informatsii, 2015, Vol. 51, No. 3, pp. 41–69.

The material in this paper was presented in part at the 2015 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’2015).

Partly supported by the German Research Foundation (DFG) under grant BO 1734/22-1.

Supported by the German Research Foundation (DFG) under grant MO 2572/1-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boche, H., Mönich, U.J. Strong divergence for system approximations. Probl Inf Transm 51, 240–266 (2015). https://doi.org/10.1134/S0032946015030047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946015030047

Keywords

Navigation