Skip to main content

Upper bounds on the smallest size of a complete arc in PG(2, q) under a certain probabilistic conjecture

Abstract

In the projective plane PG(2, q), we consider an iterative construction of complete arcs which adds a new point in each step. It is proved that uncovered points are uniformly distributed over the plane. For more than half of steps of the iterative process, we prove an estimate for the number of newly covered points in every step. A natural (and well-founded) conjecture is made that the estimate holds for the other steps too. As a result, we obtain upper bounds on the smallest size t 2(2, q) of a complete arc in PG(2, q), in particular,

$$\begin{array}{*{20}c} {t_2 (2,q) < \sqrt q \sqrt {3\ln q + \ln \ln q + \ln 3} + \sqrt {\frac{q} {{3\ln q}}} + 3,} \\ {t_2 (2,q) < 1.87\sqrt {q\ln q} .} \\ \end{array}$$

Nonstandard types of upper bounds on t 2(2, q) are considered, one of them being new. The effectiveness of the new bounds is illustrated by comparing them with the smallest known sizes of complete arcs obtained in recent works of the authors and in the present paper via computer search in a wide region of q. We note a connection of the considered problems with the so-called birthday problem (or birthday paradox).

This is a preview of subscription content, access via your institution.

References

  1. Hirschfeld, J.W.P., Projective Geometries over Finite Fields, Oxford: Clarendon; New York: Oxford Univ. Press, 1998, 2nd ed.

    MATH  Google Scholar 

  2. Segre, B., Le geometrie di Galois, Ann. Mat. Pura Appl., 1959, vol. 48, no. 1, pp. 1–96.

    Article  MATH  MathSciNet  Google Scholar 

  3. Segre, B., Introduction to Galois Geometries, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I (8), 1967, vol. 8, no. 5, pp. 133–236.

    MATH  MathSciNet  Google Scholar 

  4. Hirschfeld, J.W.P. and Storme, L., The Packing Problem in Statistics, Coding Theory and Finite Projective Spaces, J. Statist. Plann. Inference, 1998, vol. 72, no. 1–2, pp. 355–380.

    Article  MATH  MathSciNet  Google Scholar 

  5. Hirschfeld, J.W.P. and Storme, L., The Packing Problem in Statistics, Coding Theory, and Finite Projective Spaces: Update 2001, Finite Geometries (Proc. 4th Isle of Thorns Conf., July 16–21, 2000), Blokhuis, A., Hirschfeld, J.W.P., Jungnickel, D., and Thas, J.A., Eds., Dev. Math., vol. 3, Dordrecht: Kluwer, 2001, pp. 201–246.

    Google Scholar 

  6. Landjev, I., Linear Codes over Finite Fields and Finite Projective Geometries, Discrete Math., 2000, vol. 213, no. 1–3, pp. 211–244.

    Article  MATH  MathSciNet  Google Scholar 

  7. Szőnyi, T., Arcs, Caps, Codes and 3-independent Subsets, Giornate di Geometrie Combinatorie (Proc. Int. Sci. Conf., Perugia, Italy, March 11–14, 1992), Faina, G. and Tallini, G., Eds., Perugia: Univ. di Perugia, 1993, pp. 57–80.

    Google Scholar 

  8. Thas, J.A., M.D.S. Codes and Arcs in Projective Spaces: A Survey, Matematiche (Catania), 1992, vol. 47, no. 2, pp. 315–328.

    MATH  MathSciNet  Google Scholar 

  9. Hartman, A. and Raskin, L., Problems and Algorithms for Covering Arrays, Discrete Math., 2004, vol. 284, no. 1–3, pp. 149–156.

    Article  MATH  MathSciNet  Google Scholar 

  10. Keri, G., Types of Superregular Matrices and the Number of n-Arcs and Complete n-Arcs in PG(r, q), J. Combin. Des., 2006, vol. 14, no. 5, pp. 363–390.

    Article  MATH  MathSciNet  Google Scholar 

  11. Bartoli, D., Marcugini, S., and Pambianco, F., New Quantum Caps in PG(4, 4), J. Combin. Des., 2012, vol. 20, no. 10, pp. 448–466.

    Article  MATH  MathSciNet  Google Scholar 

  12. Bartoli, D., Faina, G., Marcugini, S., and Pambianco, F., On the Minimum Size of Complete Arcs and Minimal Saturating Sets in Projective Planes, J. Geom., 2013, vol. 104, no. 3, pp. 409–419.

    Article  MATH  MathSciNet  Google Scholar 

  13. Davydov, A.A., Giulietti, M., Marcugini, S., and Pambianco, F., Linear Nonbinary Covering Codes and Saturating Sets in Projective Spaces, Adv. Math. Commun., 2011, vol. 5, no. 1, pp. 119–147.

    Article  MATH  MathSciNet  Google Scholar 

  14. Davydov, A.A., Marcugini, S., and Pambianco, F., On Saturating Sets in Projective Spaces, J. Combin. Theory Ser. A., 2003, vol. 103, no. 1, pp. 1–15.

    Article  MATH  MathSciNet  Google Scholar 

  15. Giulietti, M., The Geometry of Covering Codes: Small Complete Caps and Saturating Sets in Galois Spaces, Surveys in Combinatorics 2013, Blackburn, S.R., Holloway, R., and Wildon, M., Eds., London Math. Soc. Lecture Note Ser., vol. 409, Cambridge: Cambridge Univ. Press, 2013, pp. 51–90.

    Chapter  Google Scholar 

  16. Pace, N., On Small Complete Arcs and Transitive A 5-Invariant Arcs in the Projective Plane PG(2, q), J. Combin. Des., 2014, vol. 22, no. 10, pp. 425–434.

    Article  MATH  MathSciNet  Google Scholar 

  17. Boros, E., Szőnyi, T., and Tichler, K., On Defining Sets for Projective Planes, Discrete Math., 2005, vol. 303, no. 1–3, pp. 17–31.

    Article  MATH  MathSciNet  Google Scholar 

  18. Kovács, S.J., Small Saturated Sets in Finite Projective Planes, Rend. Mat. Appl. (7), 1992, vol. 12, no. 1, pp. 157–164.

    MATH  MathSciNet  Google Scholar 

  19. Bartoli, D., Davydov, A.A., Faina, G., Marcugini, S., and Pambianco, F., On Sizes of Complete Arcs in PG(2, q), Discrete Math., 2012, vol. 312, no. 3, pp. 680–698.

    Article  MATH  MathSciNet  Google Scholar 

  20. Bartoli, D., Davydov, A.A., Faina, G., Marcugini, S., and Pambianco, F., New Upper Bounds on the Smallest Size of a Complete Arc in a Finite Desarguesian Projective Plane, J. Geom., 2013, vol. 104, no. 1, pp. 11–43.

    Article  MATH  MathSciNet  Google Scholar 

  21. Davydov, A.A., Faina, G., Marcugini, S., and Pambianco, F., Computer Search in Projective Planes for the Sizes of Complete Arcs, J. Geom., 2005, vol. 82, no. 1–2, pp. 50–62.

    Article  MATH  MathSciNet  Google Scholar 

  22. Davydov, A.A., Faina, G., Marcugini, S., and Pambianco, F., On Sizes of Complete Caps in Projective Spaces PG(n, q) and Arcs in Planes PG(2, q), J. Geom., 2009, vol. 94, no. 1–2, pp. 31–58.

    Article  MATH  MathSciNet  Google Scholar 

  23. Faina, G. and Pambianco, F., On the Spectrum of the Values k for Which a Complete k-Cap in PG(n, q) Exists, J. Geom., 1998, vol. 62, no. 1–2, pp. 84–98.

    Article  MATH  MathSciNet  Google Scholar 

  24. Kim, J.H. and Vu, V.H., Small Complete Arcs in Projective Planes, Combinatorica, 2003, vol. 23, no. 2, pp. 311–363.

    Article  MATH  MathSciNet  Google Scholar 

  25. Lombardo-Radice, L., Sul problema dei k-archi completi in S 2,q . (q = p t, p primo dispari), Boll. Un. Mat. Ital. (3), 1956, vol. 11, pp. 178–181.

    MATH  MathSciNet  Google Scholar 

  26. Pellegrino, G., Un’osservazione sul problema dei k-archi completi in S 2,q , con q ≠ 1 (mod 4) // Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur. (8), 1977, vol. 63, no. 1–2, pp. 33–44.

    MathSciNet  Google Scholar 

  27. Pellegrino, G., Archi completi, contenenti (q + 1)/2 punti di una conica, nei piani di Galois di ordine dispari, Rend. Circ. Mat. Palermo (2), 1993, vol. 42, no. 2, pp. 273–308.

    Article  MATH  MathSciNet  Google Scholar 

  28. Szőnyi, T., Small Complete Arcs in Galois Planes, Geom. Dedicata, 1985, vol. 18, no. 2, pp. 161–172.

    Article  MathSciNet  Google Scholar 

  29. Szőnyi, T., Note on the Order of Magnitude of k for Complete k-Arcs in PG(2, q), Discrete Math., 1987, vol. 66, no. 3, pp. 279–282.

    Article  MathSciNet  Google Scholar 

  30. Szőnyi, T., Complete Arcs in Galois Planes: A Survey, Quaderni del Sem. Geom. Comb., no. 94, Roma: Univ. Roma, 1989.

    Google Scholar 

  31. Szőnyi, T., Some Applications of Algebraic Curves in Finite Geometry and Combinatorics, Surveys in Combinatorics 1997, Bailey, R.A., Ed., London Math. Soc. Lecture Note Ser., vol. 241, Cambridge: Cambridge Univ. Press, 1997, pp. 198–236.

    Google Scholar 

  32. Abatangelo, V., A Class of Complete [(q + 8)/3]-Arcs of PG(2, q), with q = 2h and h (≥6) Even, Ars Combin., 1983, vol. 16, pp. 103–111.

    MATH  MathSciNet  Google Scholar 

  33. Ball, S., On Small Complete Arcs in a Finite Plane, Discrete Math., 1997, vol. 174, no. 1–3, pp. 29–34.

    Article  MATH  MathSciNet  Google Scholar 

  34. Bartoli, D., Davydov, A., Faina, G., Kreshchuk, A., Marcugini, S., and Pambianco, F., Two Types of Upper Bounds on the Smallest Size of a Complete Arc in the Plane PG(2, q), in Proc. 7th Int. Workshop on Optimal Codes and Related Topics (OC’2013), Albena, Bulgaria, Sept. 6–12, 2013, pp. 19–25.

  35. Bartoli, D., Davydov, A.A., Faina, G., Kreshchuk, A.A., Marcugini, S., and Pambianco, F., Tables of Sizes of Small Complete Arcs in the Plane PG(2, q), q ≤ 410009, arXiv:1312.2155v2 [math.CO], 2014.

    Google Scholar 

  36. Bartoli, D., Davydov, A.A., Faina, G., Kreshchuk, A.A., Marcugini, S., and Pambianco, F., Conjectural Upper Bounds on the Smallest Size of a Complete Arc in PG(2, q) Based on an Analysis of Step-by- Step Greedy Algorithms, in Proc. 14th Int. Workshop on Algebraic and Combinatorial Coding Theory (ACCT’2014), Svetlogorsk, Russia, Sept. 7–13, 2014, pp. 24–31.

  37. Bartoli, D., Davydov, A.A., Faina, G., Marcugini, S., and Pambianco, F., New Types of Estimates for the Smallest Size of Complete Arcs in a Finite Desarguesian Projective Plane, J. Geom., to appear. Available at http://link.springer.com/article/10.1007/s00022-014-0224-4.

  38. Bartoli, D., Davydov, A.A., Marcugini, S., and Pambianco, F., New Type of Estimations for the Smallest Size of Complete Arcs in PG(2, q), in Proc. 13th Int. Workshop on Algebraic and Combinatorial Coding Theory (ACCT’2012), Pomorie, Bulgaria, June 15–21, 2012, pp. 67–72.

  39. Bartoli, D., Faina, G., Marcugini, S., Pambianco, F., and Davydov, A.A., A New Algorithm and a New Type of Estimate for the Smallest Size of Complete Arcs in PG(2, q), Electron. Notes Discrete Math., 2013, vol. 40, pp. 27–31.

    Article  Google Scholar 

  40. Blokhuis, A., Blocking Sets in Desarguesian Planes, Combinatorics, Paul Erdős is Eighty, vol. 2, Miklós, D., Sós, V.T., and Szónyi, T., Eds., Bolyai Soc. Math. Stud., vol. 2, Budapest: János Bolyai Math. Soc., 1996, pp. 133–155.

    Google Scholar 

  41. Davydov, A.A., Giulietti, M., Marcugini, S., and Pambianco, F., On Sharply Transitive Sets in PG(2, q), Innov. Incidence Geom., 2007/08, vol. 6/7, pp. 139–151.

    MathSciNet  Google Scholar 

  42. Davydov, A.A., Giulietti, M., Marcugini, S., and Pambianco, F., New Inductive Constructions of Complete Caps in PG(N, q), q Even, J. Combin. Des., 2010, vol. 18, no. 3, pp. 176–201.

    MathSciNet  Google Scholar 

  43. Faina, G. and Giulietti, M., On Small Dense Arcs in Galois Planes of Square Order, Discrete Math., 2003, vol. 267, no. 1–3, pp. 113–125.

    Article  MATH  MathSciNet  Google Scholar 

  44. Faina, G., Marcugini, S., Milani, A., and Pambianco, F., The Spectrum of the Values k for Which There Exists a Complete k-Arc in PG(2, q) for q ≤ 23, Ars Combin., 1997, vol. 47, pp. 3–11.

    MATH  MathSciNet  Google Scholar 

  45. Faina, G. and Pambianco, F., On Some 10-Arcs for Deriving the Minimum Order for Complete Arcs in Small Projective Planes, Discrete Math., 1999, vol. 208/209, pp. 261–271.

    Article  MathSciNet  Google Scholar 

  46. Gács, A. and Szőnyi, T., Random Constructions and Density Results, Des. Codes Cryptogr., 2008, vol. 47, no. 1–3, pp. 267–287.

    Article  MathSciNet  Google Scholar 

  47. Giulietti, M., Small Complete Caps in PG(2, q) for q an Odd Square, J. Geom., 2000, vol. 69, no. 1–2, pp. 110–116.

    Article  MATH  MathSciNet  Google Scholar 

  48. Giulietti, M., Small Complete Caps in Galois Affine Spaces, J. Algebraic Combin., 2007, vol. 25, no. 2, pp. 149–168.

    Article  MATH  MathSciNet  Google Scholar 

  49. Giulietti, M., Small Complete Caps in PG(N, q), q Even, J. Combin. Des., 2007, vol. 15, no. 5, pp. 420–436.

    Article  MATH  MathSciNet  Google Scholar 

  50. Giulietti, M., Korchmáros, G., Marcugini, S., and Pambianco, F., Transitive A 6-Invariant k-Arcs in PG(2, q), Des. Codes Cryptogr., 2013, vol. 68, no. 1–3, pp. 73–79.

    Article  MATH  MathSciNet  Google Scholar 

  51. Giulietti, M., and Ughi, E., A Small Complete Arc in PG(2, q), q = p 2, p ≠ 3 (mod 4), Discrete Math., 1999, vol. 208/209, pp. 311–318.

    Article  MathSciNet  Google Scholar 

  52. Gordon, C.E., Orbits of Arcs in PG(N,K) under Projectivities, Geom. Dedicata, 1992, vol. 42, no. 2, pp. 187–203.

    Article  MATH  MathSciNet  Google Scholar 

  53. Hadnagy, É., Small Complete Arcs in PG(2, p), Finite Fields Appl., 1999, vol. 5, no. 1, pp. 1–12.

    Article  MATH  MathSciNet  Google Scholar 

  54. Korchmáros, G., New Examples of Complete k-Arcs in PG(2, q), European J. Combin., 1983, vol. 4, no. 4, pp. 329–334.

    Article  MATH  MathSciNet  Google Scholar 

  55. Lisoněk, P., Marcugini, S., and Pambianco, F., Constructions of Small Complete Arcs with Prescribed Symmetry, Contrib. Discrete Math., 2008, vol. 3, no. 1, pp. 14–19.

    MATH  MathSciNet  Google Scholar 

  56. Marcugini, S., Milani, A., and Pambianco, F., Minimal Complete Arcs in PG(2, q), q ≤ 29, J. Combin. Math. Combin. Comput., 2003, vol. 47, pp. 19–29.

    MATH  MathSciNet  Google Scholar 

  57. Marcugini, S., Milani, A., and Pambianco, F., Complete Arcs in PG(2, 25): The Spectrum of the Sizes and the Classification of the Smallest Complete Arcs, Discrete Math., 2007, vol. 307, no. 6, pp. 739–747.

    Article  MATH  MathSciNet  Google Scholar 

  58. Östergård, P.R.J., Computer Search for Small Complete Caps, J. Geom., 2000, vol. 69, no. 1–2, pp. 172–179.

    Article  MATH  MathSciNet  Google Scholar 

  59. Polverino, O., Small Minimal Blocking Sets and Complete k-Arcs in PG(2, p 3), Discrete Math., 1999, vol. 208/209, pp. 469–476.

    Article  MathSciNet  Google Scholar 

  60. Szőnyi, T., Arcs in Cubic Curves and 3-Independent Subsets of Abelian Groups, Combinatorics (Proc. 7th Hungarian Colloq., Eger, Hungary, July 5–10, 1987), Hajnal, A., Lovász, L., and Sós, V.T., Eds., Colloq. Math. Soc. János Bolyai, vol. 52, Amsterdam: North-Holland, 1988, pp. 499–508.

    Google Scholar 

  61. Ughi, E., The Values √2q and log2 q: Their Relationship with k-Arcs, Ars Combin., 2000, vol. 57, pp. 201–207.

    MATH  MathSciNet  Google Scholar 

  62. Ughi, E., Small Almost Complete Arcs, Discrete Math., 2002, vol. 255, no. 1–3, pp. 367–379.

    Article  MATH  MathSciNet  Google Scholar 

  63. Voloch, J.F., On the Completeness of Certain Plane Arcs, European J. Combin., 1987, vol. 8, no. 4, pp. 453–456.

    Article  MATH  MathSciNet  Google Scholar 

  64. Voloch, J.F., On the Completeness of Certain Plane Arcs. II, European J. Combin., 1990, vol. 11, no. 5, pp. 491–496.

    Article  MATH  MathSciNet  Google Scholar 

  65. Davydov, A.A., Marcugini, S., and Pambianco, F., Complete Caps in Projective Spaces PG(n, q), J. Geom., 2004, vol. 80, no. 1–2, pp. 23–30.

    MATH  MathSciNet  Google Scholar 

  66. Feller, W., An Introduction to Probability Theory and Its Applications, New York: Wiley, 1970, vol. 1, 3rd ed. Translated under the title Vvedenie v teoriyu veroyatnostei i ee prilozheniya, Moscow: Mir, 1984, vol. 1, 2nd ed.

    Google Scholar 

  67. Brink, D., A (Probably) Exact Solution to the Birthday Problem, Ramanujan J., 2012, vol. 28, no. 2, pp. 223–238.

    Article  MATH  MathSciNet  Google Scholar 

  68. Clevenson, M.L. and Watkins, W., Majorization and the Birthday Inequality, Math. Mag., 1991, vol. 64, no. 3, pp. 183–188.

    Article  MATH  MathSciNet  Google Scholar 

  69. Sayrafiezadeh, M., The Birthday Problem Revisited, Math. Mag., 1994, vol. 67, no. 3, pp. 220–223.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bartoli.

Additional information

Original Russian Text © D. Bartoli, A.A. Davydov, G. Faina, A.A. Kreshchuk, S. Marcugini, F. Pambianco, 2014, published in Problemy Peredachi Informatsii, 2014, Vol. 50, No. 4, pp. 22–42.

Supported in part by the Ministry for Education, University and Research of Italy (MIUR), project “Geometrie di Galois e strutture di incidenza,” and Italian National Group for Algebraic and Geometric Structures and their Applications (G.N.S.A.G.A.).

Supported by the European Community under a Marie-Curie Intra-European Fellowship, FACE project no. 626511.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartoli, D., Davydov, A.A., Faina, G. et al. Upper bounds on the smallest size of a complete arc in PG(2, q) under a certain probabilistic conjecture. Probl Inf Transm 50, 320–339 (2014). https://doi.org/10.1134/S0032946014040036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946014040036

Keywords