Abstract
In the projective plane PG(2, q), we consider an iterative construction of complete arcs which adds a new point in each step. It is proved that uncovered points are uniformly distributed over the plane. For more than half of steps of the iterative process, we prove an estimate for the number of newly covered points in every step. A natural (and well-founded) conjecture is made that the estimate holds for the other steps too. As a result, we obtain upper bounds on the smallest size t 2(2, q) of a complete arc in PG(2, q), in particular,
Nonstandard types of upper bounds on t 2(2, q) are considered, one of them being new. The effectiveness of the new bounds is illustrated by comparing them with the smallest known sizes of complete arcs obtained in recent works of the authors and in the present paper via computer search in a wide region of q. We note a connection of the considered problems with the so-called birthday problem (or birthday paradox).
This is a preview of subscription content, access via your institution.
References
Hirschfeld, J.W.P., Projective Geometries over Finite Fields, Oxford: Clarendon; New York: Oxford Univ. Press, 1998, 2nd ed.
Segre, B., Le geometrie di Galois, Ann. Mat. Pura Appl., 1959, vol. 48, no. 1, pp. 1–96.
Segre, B., Introduction to Galois Geometries, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I (8), 1967, vol. 8, no. 5, pp. 133–236.
Hirschfeld, J.W.P. and Storme, L., The Packing Problem in Statistics, Coding Theory and Finite Projective Spaces, J. Statist. Plann. Inference, 1998, vol. 72, no. 1–2, pp. 355–380.
Hirschfeld, J.W.P. and Storme, L., The Packing Problem in Statistics, Coding Theory, and Finite Projective Spaces: Update 2001, Finite Geometries (Proc. 4th Isle of Thorns Conf., July 16–21, 2000), Blokhuis, A., Hirschfeld, J.W.P., Jungnickel, D., and Thas, J.A., Eds., Dev. Math., vol. 3, Dordrecht: Kluwer, 2001, pp. 201–246.
Landjev, I., Linear Codes over Finite Fields and Finite Projective Geometries, Discrete Math., 2000, vol. 213, no. 1–3, pp. 211–244.
Szőnyi, T., Arcs, Caps, Codes and 3-independent Subsets, Giornate di Geometrie Combinatorie (Proc. Int. Sci. Conf., Perugia, Italy, March 11–14, 1992), Faina, G. and Tallini, G., Eds., Perugia: Univ. di Perugia, 1993, pp. 57–80.
Thas, J.A., M.D.S. Codes and Arcs in Projective Spaces: A Survey, Matematiche (Catania), 1992, vol. 47, no. 2, pp. 315–328.
Hartman, A. and Raskin, L., Problems and Algorithms for Covering Arrays, Discrete Math., 2004, vol. 284, no. 1–3, pp. 149–156.
Keri, G., Types of Superregular Matrices and the Number of n-Arcs and Complete n-Arcs in PG(r, q), J. Combin. Des., 2006, vol. 14, no. 5, pp. 363–390.
Bartoli, D., Marcugini, S., and Pambianco, F., New Quantum Caps in PG(4, 4), J. Combin. Des., 2012, vol. 20, no. 10, pp. 448–466.
Bartoli, D., Faina, G., Marcugini, S., and Pambianco, F., On the Minimum Size of Complete Arcs and Minimal Saturating Sets in Projective Planes, J. Geom., 2013, vol. 104, no. 3, pp. 409–419.
Davydov, A.A., Giulietti, M., Marcugini, S., and Pambianco, F., Linear Nonbinary Covering Codes and Saturating Sets in Projective Spaces, Adv. Math. Commun., 2011, vol. 5, no. 1, pp. 119–147.
Davydov, A.A., Marcugini, S., and Pambianco, F., On Saturating Sets in Projective Spaces, J. Combin. Theory Ser. A., 2003, vol. 103, no. 1, pp. 1–15.
Giulietti, M., The Geometry of Covering Codes: Small Complete Caps and Saturating Sets in Galois Spaces, Surveys in Combinatorics 2013, Blackburn, S.R., Holloway, R., and Wildon, M., Eds., London Math. Soc. Lecture Note Ser., vol. 409, Cambridge: Cambridge Univ. Press, 2013, pp. 51–90.
Pace, N., On Small Complete Arcs and Transitive A 5-Invariant Arcs in the Projective Plane PG(2, q), J. Combin. Des., 2014, vol. 22, no. 10, pp. 425–434.
Boros, E., Szőnyi, T., and Tichler, K., On Defining Sets for Projective Planes, Discrete Math., 2005, vol. 303, no. 1–3, pp. 17–31.
Kovács, S.J., Small Saturated Sets in Finite Projective Planes, Rend. Mat. Appl. (7), 1992, vol. 12, no. 1, pp. 157–164.
Bartoli, D., Davydov, A.A., Faina, G., Marcugini, S., and Pambianco, F., On Sizes of Complete Arcs in PG(2, q), Discrete Math., 2012, vol. 312, no. 3, pp. 680–698.
Bartoli, D., Davydov, A.A., Faina, G., Marcugini, S., and Pambianco, F., New Upper Bounds on the Smallest Size of a Complete Arc in a Finite Desarguesian Projective Plane, J. Geom., 2013, vol. 104, no. 1, pp. 11–43.
Davydov, A.A., Faina, G., Marcugini, S., and Pambianco, F., Computer Search in Projective Planes for the Sizes of Complete Arcs, J. Geom., 2005, vol. 82, no. 1–2, pp. 50–62.
Davydov, A.A., Faina, G., Marcugini, S., and Pambianco, F., On Sizes of Complete Caps in Projective Spaces PG(n, q) and Arcs in Planes PG(2, q), J. Geom., 2009, vol. 94, no. 1–2, pp. 31–58.
Faina, G. and Pambianco, F., On the Spectrum of the Values k for Which a Complete k-Cap in PG(n, q) Exists, J. Geom., 1998, vol. 62, no. 1–2, pp. 84–98.
Kim, J.H. and Vu, V.H., Small Complete Arcs in Projective Planes, Combinatorica, 2003, vol. 23, no. 2, pp. 311–363.
Lombardo-Radice, L., Sul problema dei k-archi completi in S 2,q . (q = p t, p primo dispari), Boll. Un. Mat. Ital. (3), 1956, vol. 11, pp. 178–181.
Pellegrino, G., Un’osservazione sul problema dei k-archi completi in S 2,q , con q ≠ 1 (mod 4) // Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur. (8), 1977, vol. 63, no. 1–2, pp. 33–44.
Pellegrino, G., Archi completi, contenenti (q + 1)/2 punti di una conica, nei piani di Galois di ordine dispari, Rend. Circ. Mat. Palermo (2), 1993, vol. 42, no. 2, pp. 273–308.
Szőnyi, T., Small Complete Arcs in Galois Planes, Geom. Dedicata, 1985, vol. 18, no. 2, pp. 161–172.
Szőnyi, T., Note on the Order of Magnitude of k for Complete k-Arcs in PG(2, q), Discrete Math., 1987, vol. 66, no. 3, pp. 279–282.
Szőnyi, T., Complete Arcs in Galois Planes: A Survey, Quaderni del Sem. Geom. Comb., no. 94, Roma: Univ. Roma, 1989.
Szőnyi, T., Some Applications of Algebraic Curves in Finite Geometry and Combinatorics, Surveys in Combinatorics 1997, Bailey, R.A., Ed., London Math. Soc. Lecture Note Ser., vol. 241, Cambridge: Cambridge Univ. Press, 1997, pp. 198–236.
Abatangelo, V., A Class of Complete [(q + 8)/3]-Arcs of PG(2, q), with q = 2h and h (≥6) Even, Ars Combin., 1983, vol. 16, pp. 103–111.
Ball, S., On Small Complete Arcs in a Finite Plane, Discrete Math., 1997, vol. 174, no. 1–3, pp. 29–34.
Bartoli, D., Davydov, A., Faina, G., Kreshchuk, A., Marcugini, S., and Pambianco, F., Two Types of Upper Bounds on the Smallest Size of a Complete Arc in the Plane PG(2, q), in Proc. 7th Int. Workshop on Optimal Codes and Related Topics (OC’2013), Albena, Bulgaria, Sept. 6–12, 2013, pp. 19–25.
Bartoli, D., Davydov, A.A., Faina, G., Kreshchuk, A.A., Marcugini, S., and Pambianco, F., Tables of Sizes of Small Complete Arcs in the Plane PG(2, q), q ≤ 410009, arXiv:1312.2155v2 [math.CO], 2014.
Bartoli, D., Davydov, A.A., Faina, G., Kreshchuk, A.A., Marcugini, S., and Pambianco, F., Conjectural Upper Bounds on the Smallest Size of a Complete Arc in PG(2, q) Based on an Analysis of Step-by- Step Greedy Algorithms, in Proc. 14th Int. Workshop on Algebraic and Combinatorial Coding Theory (ACCT’2014), Svetlogorsk, Russia, Sept. 7–13, 2014, pp. 24–31.
Bartoli, D., Davydov, A.A., Faina, G., Marcugini, S., and Pambianco, F., New Types of Estimates for the Smallest Size of Complete Arcs in a Finite Desarguesian Projective Plane, J. Geom., to appear. Available at http://link.springer.com/article/10.1007/s00022-014-0224-4.
Bartoli, D., Davydov, A.A., Marcugini, S., and Pambianco, F., New Type of Estimations for the Smallest Size of Complete Arcs in PG(2, q), in Proc. 13th Int. Workshop on Algebraic and Combinatorial Coding Theory (ACCT’2012), Pomorie, Bulgaria, June 15–21, 2012, pp. 67–72.
Bartoli, D., Faina, G., Marcugini, S., Pambianco, F., and Davydov, A.A., A New Algorithm and a New Type of Estimate for the Smallest Size of Complete Arcs in PG(2, q), Electron. Notes Discrete Math., 2013, vol. 40, pp. 27–31.
Blokhuis, A., Blocking Sets in Desarguesian Planes, Combinatorics, Paul Erdős is Eighty, vol. 2, Miklós, D., Sós, V.T., and Szónyi, T., Eds., Bolyai Soc. Math. Stud., vol. 2, Budapest: János Bolyai Math. Soc., 1996, pp. 133–155.
Davydov, A.A., Giulietti, M., Marcugini, S., and Pambianco, F., On Sharply Transitive Sets in PG(2, q), Innov. Incidence Geom., 2007/08, vol. 6/7, pp. 139–151.
Davydov, A.A., Giulietti, M., Marcugini, S., and Pambianco, F., New Inductive Constructions of Complete Caps in PG(N, q), q Even, J. Combin. Des., 2010, vol. 18, no. 3, pp. 176–201.
Faina, G. and Giulietti, M., On Small Dense Arcs in Galois Planes of Square Order, Discrete Math., 2003, vol. 267, no. 1–3, pp. 113–125.
Faina, G., Marcugini, S., Milani, A., and Pambianco, F., The Spectrum of the Values k for Which There Exists a Complete k-Arc in PG(2, q) for q ≤ 23, Ars Combin., 1997, vol. 47, pp. 3–11.
Faina, G. and Pambianco, F., On Some 10-Arcs for Deriving the Minimum Order for Complete Arcs in Small Projective Planes, Discrete Math., 1999, vol. 208/209, pp. 261–271.
Gács, A. and Szőnyi, T., Random Constructions and Density Results, Des. Codes Cryptogr., 2008, vol. 47, no. 1–3, pp. 267–287.
Giulietti, M., Small Complete Caps in PG(2, q) for q an Odd Square, J. Geom., 2000, vol. 69, no. 1–2, pp. 110–116.
Giulietti, M., Small Complete Caps in Galois Affine Spaces, J. Algebraic Combin., 2007, vol. 25, no. 2, pp. 149–168.
Giulietti, M., Small Complete Caps in PG(N, q), q Even, J. Combin. Des., 2007, vol. 15, no. 5, pp. 420–436.
Giulietti, M., Korchmáros, G., Marcugini, S., and Pambianco, F., Transitive A 6-Invariant k-Arcs in PG(2, q), Des. Codes Cryptogr., 2013, vol. 68, no. 1–3, pp. 73–79.
Giulietti, M., and Ughi, E., A Small Complete Arc in PG(2, q), q = p 2, p ≠ 3 (mod 4), Discrete Math., 1999, vol. 208/209, pp. 311–318.
Gordon, C.E., Orbits of Arcs in PG(N,K) under Projectivities, Geom. Dedicata, 1992, vol. 42, no. 2, pp. 187–203.
Hadnagy, É., Small Complete Arcs in PG(2, p), Finite Fields Appl., 1999, vol. 5, no. 1, pp. 1–12.
Korchmáros, G., New Examples of Complete k-Arcs in PG(2, q), European J. Combin., 1983, vol. 4, no. 4, pp. 329–334.
Lisoněk, P., Marcugini, S., and Pambianco, F., Constructions of Small Complete Arcs with Prescribed Symmetry, Contrib. Discrete Math., 2008, vol. 3, no. 1, pp. 14–19.
Marcugini, S., Milani, A., and Pambianco, F., Minimal Complete Arcs in PG(2, q), q ≤ 29, J. Combin. Math. Combin. Comput., 2003, vol. 47, pp. 19–29.
Marcugini, S., Milani, A., and Pambianco, F., Complete Arcs in PG(2, 25): The Spectrum of the Sizes and the Classification of the Smallest Complete Arcs, Discrete Math., 2007, vol. 307, no. 6, pp. 739–747.
Östergård, P.R.J., Computer Search for Small Complete Caps, J. Geom., 2000, vol. 69, no. 1–2, pp. 172–179.
Polverino, O., Small Minimal Blocking Sets and Complete k-Arcs in PG(2, p 3), Discrete Math., 1999, vol. 208/209, pp. 469–476.
Szőnyi, T., Arcs in Cubic Curves and 3-Independent Subsets of Abelian Groups, Combinatorics (Proc. 7th Hungarian Colloq., Eger, Hungary, July 5–10, 1987), Hajnal, A., Lovász, L., and Sós, V.T., Eds., Colloq. Math. Soc. János Bolyai, vol. 52, Amsterdam: North-Holland, 1988, pp. 499–508.
Ughi, E., The Values √2q and log2 q: Their Relationship with k-Arcs, Ars Combin., 2000, vol. 57, pp. 201–207.
Ughi, E., Small Almost Complete Arcs, Discrete Math., 2002, vol. 255, no. 1–3, pp. 367–379.
Voloch, J.F., On the Completeness of Certain Plane Arcs, European J. Combin., 1987, vol. 8, no. 4, pp. 453–456.
Voloch, J.F., On the Completeness of Certain Plane Arcs. II, European J. Combin., 1990, vol. 11, no. 5, pp. 491–496.
Davydov, A.A., Marcugini, S., and Pambianco, F., Complete Caps in Projective Spaces PG(n, q), J. Geom., 2004, vol. 80, no. 1–2, pp. 23–30.
Feller, W., An Introduction to Probability Theory and Its Applications, New York: Wiley, 1970, vol. 1, 3rd ed. Translated under the title Vvedenie v teoriyu veroyatnostei i ee prilozheniya, Moscow: Mir, 1984, vol. 1, 2nd ed.
Brink, D., A (Probably) Exact Solution to the Birthday Problem, Ramanujan J., 2012, vol. 28, no. 2, pp. 223–238.
Clevenson, M.L. and Watkins, W., Majorization and the Birthday Inequality, Math. Mag., 1991, vol. 64, no. 3, pp. 183–188.
Sayrafiezadeh, M., The Birthday Problem Revisited, Math. Mag., 1994, vol. 67, no. 3, pp. 220–223.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © D. Bartoli, A.A. Davydov, G. Faina, A.A. Kreshchuk, S. Marcugini, F. Pambianco, 2014, published in Problemy Peredachi Informatsii, 2014, Vol. 50, No. 4, pp. 22–42.
Supported in part by the Ministry for Education, University and Research of Italy (MIUR), project “Geometrie di Galois e strutture di incidenza,” and Italian National Group for Algebraic and Geometric Structures and their Applications (G.N.S.A.G.A.).
Supported by the European Community under a Marie-Curie Intra-European Fellowship, FACE project no. 626511.
Rights and permissions
About this article
Cite this article
Bartoli, D., Davydov, A.A., Faina, G. et al. Upper bounds on the smallest size of a complete arc in PG(2, q) under a certain probabilistic conjecture. Probl Inf Transm 50, 320–339 (2014). https://doi.org/10.1134/S0032946014040036
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0032946014040036