Problems of Information Transmission

, Volume 47, Issue 1, pp 64–80 | Cite as

Enumeration of constant-weight run-length limited binary sequences

  • O. F. KurmaevEmail author
Source Coding


Constant-weight binary sequences with constrained run lengths of zeros and ones are introduced. These run-length constraints are separate and independent. Using the Babkin-Cover enumerative scheme, the number of these sequences is found. Then enumeration-based encoding and decoding procedures are constructed.


Information Transmission Binary Sequence Channel Code Data Storage System Permutation Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Immink, K.A.S., Siegel, P.H., and Wolf, J.K., Codes for Digital Recorders, IEEE Trans. Inform. Theory, 1998, vol. 44, no. 6, pp. 2260–2299.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Vasil’ev, P.I. and Kolesnik, V.D., Run-Length-Limited Codes, in Pomekhoustoichivoe kodirovanie i nadezhnost’ EVM (Error-Resistant Coding and Computer Reliability), Moscow: Nauka, 1987, pp. 95–109.Google Scholar
  3. 3.
    Kurmaev, O.F., Coding of Run-Length-Limited Sequences, Probl. Peredachi Inf., 2001, vol. 37, no. 3, pp. 34–43 [Probl. Inf. Trans. (Engl. Transl.), 2001, vol. 37, no. 3, pp. 216–225].MathSciNetGoogle Scholar
  4. 4.
    Beenker, G.F.M. and Immink, K.A.S., A Generalized Method For Encoding and Decoding Run-Length-Limited Binary Sequences, IEEE Trans. Inform. Theory, 1983, vol. 29, no. 5, pp. 751–754.CrossRefzbMATHGoogle Scholar
  5. 5.
    Babkin, V.F., A Universal Encoding Method with Nonexponential Work Expenditure for a Source of Independent Messages, Probl. Peredachi Inf., 1971, vol. 7, no. 4, pp. 13–21 [Probl. Inf. Trans. (Engl. Transl.), 1971, vol. 7, no. 4, pp. 288–294].zbMATHMathSciNetGoogle Scholar
  6. 6.
    Cover, T.M., Enumerative Source Encoding, IEEE Trans. Inform. Theory, 1973, vol. 19, no. 1, pp. 73–77.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Kautz, W.H., Fibonacci Codes for Synchronization Control, IEEE Trans. Inform. Theory, 1965, vol. 11, no. 2, pp. 284–292.CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Blaum, M.C., Cideciyan, R.D., Eleftheriou, E., Galbraith, R., Lakovic, K., Mittelholzer, T., Oenning, T., and Wilson, B., Enumerative Encoding with Non-uniform Modulation Constraints, in Proc. 2007 IEEE Int. Sympos. on Information Theory (ISIT’2007), Nice, France, 2007, pp. 1831–1835.Google Scholar
  9. 9.
    Blaum, M.C. and Lakovic, K., Variable Span Fibonacci Modulation Codes with Limited Byte Error Propagation, in Proc. 2007 IEEE Int. Sympos. on Information Theory (ISIT’2007), Nice, France, 2007, pp. 2541–2544.Google Scholar
  10. 10.
    Datta, S. and McLaughlin, S.W., An Enumerative Method for Runlength-Limited Codes: Permutation Codes, IEEE Trans. Inform. Theory, 1999, vol. 45, no. 6, pp. 2199–2204.CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Ryabko, B. and Medvedeva, Yu., Fast Enumeration of Run-Length-Limited Words, in Proc. 2009 IEEE Int. Sympos. on Information Theory (ISIT’2009), Seoul, Korea, 2009, pp. 640–643.Google Scholar
  12. 12.
    Lee, P., Combined Error-Correcting/Modulation Recording Codes, PhD Thesis, San Diego: Univ. of California, 1988.Google Scholar
  13. 13.
    Forsberg, K. and Blake, I., The Enumeration of (d, k) Sequences, in Proc. 26th Allerton Conf. on Communications, Control, and Computing, Monticello, IL, 1988, pp. 471–472.Google Scholar
  14. 14.
    Ytrehus, IEEE Trans. Inform. Theory, 1991, vol. 37, no. 3, pp. 941–945.CrossRefMathSciNetGoogle Scholar
  15. 15.
    Kurmaev, O.F., Enumerative Coding for Constant-Weight Binary Sequences with Constrained Run-Length of Zeros, Probl. Peredachi Inf., 2002, vol. 38, no. 4, pp. 3–9 [Probl. Inf. Trans. (Engl. Transl.), 2002, vol. 38, no. 4, pp. 249–254].MathSciNetGoogle Scholar
  16. 16.
    Riordan, J., An Introduction to Combinatorial Analysis, New York: Wiley, 1958. Translated under the title Vvedenie v kombinatornyi analiz, Moscow: Inostr. Lit., 1963.zbMATHGoogle Scholar
  17. 17.
    Knuth, D.E., Efficient Balanced Codes, IEEE Trans. Inform. Theory, 1986, vol. 32, no. 1, pp. 51–53.CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Hollmann, H.D.L. and Immink, K.A.S., Performance of Efficient Balanced Codes, IEEE Trans. Inform. Theory, 1991, vol. 37, no. 3, pp. 913–918.CrossRefMathSciNetGoogle Scholar
  19. 19.
    Weber, J.H. and Immink, K.A.S., Knuth’s Balanced Codes Revisited, IEEE Trans. Inform. Theory, 2010, vol. 56, no. 4, pp. 1673–1679.CrossRefMathSciNetGoogle Scholar
  20. 20.
    Moon, J. and Brickner, B., Maximum Transition Run Codes for Data Storage Systems, IEEE Trans. Magn., 1996, vol. 32, no. 5, pp. 3992–3994.CrossRefGoogle Scholar
  21. 21.
    Schouhamer Immink, K.A., Codes for Mass Data Storage Systems, Eindhoven: Shannon Foundation Publ., 2004, 2nd ed.Google Scholar
  22. 22.
    Kurmaev, O., An Enumerative Method for Encoding and Decoding Constant-Weight Run-Length Limited Binary Sequences, in Proc. 2002 IEEE Int. Sympos. on Information Theory (ISIT’2002), Lausanne, Switzerland, 2002, pp. 328.Google Scholar
  23. 23.
    Schalkwijk, J.P.M., An Algorithm for Source Coding, IEEE Trans. Inform. Theory, 1972, vol. 18, no. 3, pp. 395–399.CrossRefzbMATHGoogle Scholar
  24. 24.
    Golomb, S.W., Run-Length Encodings, IEEE Trans. Inform. Theory, 1966, vol. 12, no. 3, pp. 399–401.CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Tal, I., Etzion, T., and Roth, R.M., On Row-by-Row Coding for 2-D Constraints, IEEE Trans. Inform. Theory, 2009, vol. 55, no. 8, pp. 3565–3576.CrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Moscow State Institute of Electronic TechnologyMoscowRussia

Personalised recommendations