Advertisement

Problems of Information Transmission

, Volume 47, Issue 1, pp 15–27 | Cite as

On metric rigidity for some classes of codes

  • D. I. KovalevskayaEmail author
Coding Theory

Abstract

A code C in the n-dimensional metric space \( \mathbb{F}_q^n \) over the Galois field GF(q) is said to be metrically rigid if any isometry I: C\( \mathbb{F}_q^n \) can be extended to an isometry (automorphism) of \( \mathbb{F}_q^n \). We prove metric rigidity for some classes of codes, including certain classes of equidistant codes and codes corresponding to one class of affine resolvable designs.

Keywords

Automorphism Group Information Transmission Binary Code Prime Power Narrow Sense 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Witt, E., Theorie der quadratischen Formen in beliebigen Körpern, J. Reine Angew. Math., 1936, vol. 176, pp. 31–44.Google Scholar
  2. 2.
    Avgustinovich, S.V., On the Isometricity of Densely Packed Binary Codes, in Diskretnyi analiz (Discrete Analysis), Trudy Inst. Mat., Novosibirsk: Inst. Mat. Sib. Otd. Ross. Akad. Nauk, 1994, vol. 27, pp. 3–5.Google Scholar
  3. 3.
    Solov’eva, F.I., Avgustinovich, S.V., Honold, T., and Heise, W., On the Extendability of Code Isometries, J. Geom., 1998, vol. 61, no. 1–2, pp. 3–16.zbMATHMathSciNetGoogle Scholar
  4. 4.
    Solov’eva, F.I., Avgustinovich, S.V., Honold, T., and Heise, W., Metrically Rigid Codes, in Proc. 6th Int. Workshop on Algebraic and Combinatorial Coding Theory (ACCT’98), Pskov, Russia, 1998, pp. 215–219.Google Scholar
  5. 5.
    Avgustinovich, S.V. and Solov’eva, F.I., To the Metric Rigidity of Binary Codes, Probl. Peredachi Inf., 2003, vol. 39, no. 2, pp. 23–28 [Probl. Inf. Trans. (Engl. Transl.), 2003, vol. 39, no. 2, pp. 178–183].MathSciNetGoogle Scholar
  6. 6.
    Bassalygo, L.A., Zaitsev, G.V., and Zinoviev, V.A., Uniformly Packed Codes, Probl. Peredachi Inf., 1974, vol. 10, no. 1, pp. 9–14 [Probl. Inf. Trans. (Engl. Transl.), 1974, vol. 10, no. 1, pp. 6–9].zbMATHGoogle Scholar
  7. 7.
    Tonchev, V.D., Codes and Designs, Ch. 15 of Handbook of Coding Theory, Pless, V.S. and Huffman, W.C., Eds., Amsterdam: Elsevier, 1998, pp. 1231–1268.Google Scholar
  8. 8.
    Semakov, N.V. and Zinoviev, V.A., Equidistant q-ary Codes with Maximal Distance and Resolvable Balanced Incomplete Block Designs, Probl. Peredachi Inf., 1968, vol. 4, no. 2, pp. 3–10 [Probl. Inf. Trans. (Engl. Transl.), 1968, vol. 4, no. 2, pp. 1–7].zbMATHGoogle Scholar
  9. 9.
    Khachatrian, L.G., Equidistant Codes and Equidistant Permutation Arrays, Probl. Peredachi Inf., 1981, vol. 17, no. 4, pp. 116–119.Google Scholar
  10. 10.
    Bogdanova, G.T., Zinoviev, V.A., and Todorov, T.J., On the Construction of q-ary Equidistant Codes, Probl. Peredachi Inf., 2007, vol. 43, no. 4, pp. 13–36 [Probl. Inf. Trans. (Engl. Transl.), 2007, vol. 43, no. 4, pp. 280–302].Google Scholar
  11. 11.
    MacWilliams, F.J. and Sloane, N.J.A., The Theory of Error-Correcting Codes, Amsterdam: North-Holland, 1977. Translated under the title Teoriya kodov, ispravlyayushchikh oshibki, Moscow: Svyaz’, 1979.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Sobolev Institute of Mathematics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations