Asymptotic estimation of the fraction of errors correctable by q-ary LDPC codes

Abstract

We consider an ensemble of random q-ary LDPC codes. As constituent codes, we use q-ary single-parity-check codes with d = 2 and Reed-Solomon codes with d = 3. We propose a hard-decision iterative decoding algorithm with the number of iterations of the order of the logarithm of the code length. We show that under this decoding algorithm there are codes in the ensemble with the number of correctable errors linearly growing with the code length. We weaken a condition on the vertex expansion of the Tanner graph corresponding to the code.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Gallager, R.G., Low-Density Parity-Check Codes, Cambridge: MIT Press, 1963. Translated under the title Kody s maloi plotnost’yu proverok na chetnost’, Moscow: Mir, 1966.

    Google Scholar 

  2. 2.

    Tanner, R.M., A Recursive Approach to Low Complexity Codes, IEEE Trans. Inform. Theory, 1981, vol. 27, no. 5, pp. 533–547.

    MATH  Article  MathSciNet  Google Scholar 

  3. 3.

    Zyablov, V.V., Johannesson, R., and Lončar, M., Low-Complexity Error Correction of Hamming-Code-Based LDPC Codes, Probl. Peredachi Inf., 2009, vol. 45, no. 2, pp. 25–40 [Probl. Inf. Trans. (Engl. Transl.), 2009, vol. 45, no. 2, pp. 95–109].

    Google Scholar 

  4. 4.

    Zyablov, V., Johannesson, R., Lončar, M., and Rybin, P., On the Erasure-Correcting Capabilities of Low-Complexity Decoded LDPC Codes with Constituent Hamming Codes, in Proc. 11th Int. Workshop on Algebraic and Combinatorial Coding Theory (ACCT’2008), Pamporovo, Bulgaria, 2008, pp. 338–347.

  5. 5.

    Miladinović, N. and Fossorier, M., Generalized LDPC Codes with Reed-Solomon and BCH Codes as Component Codes for Binary Channels, in Proc. IEEE Conf. on Global Telecommunications (GLOBECOM 2005), St. Louis, USA, 2005, pp. 591–596.

  6. 6.

    Zyablov, V.V. and Pinsker, M.S., Estimation of the Error-Correction Complexity for Gallager Low-Density Codes, Probl. Peredachi Inf., 1975, vol. 11, no. 1, pp. 23–36 [Probl. Inf. Trans. (Engl. Transl.), 1975, vol. 11, no. 1, pp. 18–28].

    MATH  Google Scholar 

  7. 7.

    Bassalygo, L.A., Formalization of the Problem of Complexity of Code Specification, Probl. Peredachi Inf., 1976, vol. 12, no. 4, pp. 105–106 [Probl. Inf. Trans. (Engl. Transl.), 1976, vol. 12, no. 4, pp. 322–324].

    MATH  MathSciNet  Google Scholar 

  8. 8.

    Zyablov, V., Potapov, V., and Groshev, F., Low-Complexity Error Correction in LDPC Codes with Constituent RS Codes, in Proc. 11th Int. Workshop on Algebraic and Combinatorial Coding Theory (ACCT’2008), Pamporovo, Bulgaria, 2008, pp. 348–353.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Frolov.

Additional information

Original Russian Text © A.A. Frolov, V.V. Zyablov, 2010, published in Problemy Peredachi Informatsii, 2010, Vol. 46, No. 2, pp. 47–65.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Frolov, A.A., Zyablov, V.V. Asymptotic estimation of the fraction of errors correctable by q-ary LDPC codes. Probl Inf Transm 46, 142–159 (2010). https://doi.org/10.1134/S0032946010020043

Download citation

Keywords

  • Information Transmission
  • Asymptotic Estimation
  • Code Rate
  • LDPC Code
  • Code Length