Skip to main content
Log in

Comparative Study of Biochemical and Histopathological Parameters of Two Black Sea Goby Species

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

The aim of the present study was to conduct the comparative analysis of the set of biochemical and histopathological parameters of the goby Neogobius melanostomus (Pallas, 1814) and the knout goby Mesogobius batrachocephalus (Pallas, 1814) collected from Apollonova Bay (the Black Sea, Sevastopol). The biochemical analyses performed in the tissues of two fish species revealed shifting in the prooxidant-antioxidant reactions towards the lipid peroxidation processes in liver, illustrated decreased activity of alanine aminotransferase and alkaline phosphatase in the organ and its increase in serum of the round goby, thus showing more pronounced oxidative damages of hepatocytes as compared to the knout goby and was confirmed histologically. Necrosis of single hepatocytes was detected in 44.44% of the round goby in contrast to 28% in the knout goby. The histopathological studies of gills, kidneys and liver revealed 22 alterations in the round goby and 18 in the knout goby, that belonged to five types of patterns: circulatory disorders, inflammatory reactions, progressive and regressive changes, benign tumours. In liver (lipoid vacuolization of hepatocytes) and kidney (vacuolization and hyaline-droplet degeneration of nephrocytes, nephrocalcinosis, local necrosis of the renal tubules) regressive changes dominated and were registered as much more common for the round goby. The most histopathological lesions in gobies’ gills (hyperplasia of the respiratory epithelium and fusion of the gill lamellae) were found progressive and related to the compensatory-adaptive reactions. Thus, the obtained results indicate a moderate chronic toxic effects of contaminants on fish in Apollonova Bay, and testify greater sensitivity of the round goby to the level of mixed pollution /Cu content in this water body, and hence make it more preferable for biodiagnostics throughout the water regions. Based on our researches, we can recommend the joint application of biochemical and histopathological parameters of two goby species to ensure the correct interpretation in bioindication studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. SanPiN 2.3.2.1078-01. Hygienic requirements for the quality and safety of food raw materials and food products. Sanitary rules and regulations, 2002. https://base.garant.ru/4178234/. Version 02/ 2023.

REFERENCES

  1. Au, D.W.T., The application of histo-cytopathological biomarkers in marine pollution monitoring: a review, Mar. Pollut. Bull., 2004, vol. 48, no. 9–10, pp. 817–834. https://doi.org/10.1016/j.marpolbul.2004.02.032

    Article  CAS  PubMed  Google Scholar 

  2. Authman, M.M.N., Zaki, M.S., Khallaf, E.A., and Abbas, H.H., Use of fish as bio-indicator of the effects of heavy metals pollution, J. Aquac. Res. Dev., 2015, vol. 6, no. 4, pp. 1–13. https://doi.org/10.4172/2155-9546.1000328

    Article  CAS  Google Scholar 

  3. Bancroft, J.D., Lyton, K., Survarna, K.S., Theory and Practice of Histological Techniques, London: Elsevier, 2012.

    Google Scholar 

  4. Bernet, D., Schmidt, H., Meier, W., et al., Histopathology in fish: Proposal for protocol to assess aquatic pollution, J. Fish Dis., 1999, vol. 22, pp. 25–34. https://doi.org/10.1046/j.1365-2761.1999.00134.x

    Article  Google Scholar 

  5. Bin Dohaish, A.J., Impact of some heavy metals present in the coastal area of Jeddah, Saudi Arabia on the gills, intestine and liver tissues of Lutjanus monostigma, J. Environ. Biol., 2018, vol. 39, pp. 253–260. https://doi.org/10.22438/jeb/39/2/PRN-121

    Article  CAS  Google Scholar 

  6. Blazer, V.S., Fournie, J.W., Wolf, J.C., Wolfe, M.J., Diagnostic criteria for proliferative hepatic lesions in brown bullhead Ameiurus nebulosus, Dis. Aquat. Organ., 2006, vol. 72, pp. 19–30. https://doi.org/10.3354/dao072019

    Article  PubMed  Google Scholar 

  7. Bruno, D.W., Novak, B., Elliott, D.G., Guide to the identification of fish protozoan and metazoan parasites in stained tissue sections, Ibid., 2006, vol. 70, pp. 1–36. https://doi.org/10.3354/dao070001

    Article  CAS  Google Scholar 

  8. Chepurnov, A.V. and Tkachenko, N.K., Changes in the lipid composition of females and males of the Black Sea round goby during spawning and early ontogenesis, in Biokhimicheskie i ekologo-fiziologicheskie issledovaniya ryb i bespozvonochnykh (Biochemical and Ecological-Physiological Studies of Fish and Invertebrates), Kyiv: Nauk. Dumka, 1973, pt. 2, pp. 212–216.

  9. Costa, P.M., Diniz, M.S., Caeiro, S., et al., Histological biomarkers in liver and gills of juvenile Solea senegalensis exposed to contaminated estuarine sediments: A weighted indices approach, Aquat. Toxicol., 2009, vol. 92, pp. 202–212. https://doi.org/10.1016/j.aquatox.2008.12.009

    Article  CAS  PubMed  Google Scholar 

  10. Costa, P.M., Caeiro, S., Costa, M.H., Multi-organ histological observations on juvenile Senegalese soles exposed to low concentrations of waterborne cadmium, Fish. Physiol. Biochem., 2013, vol. 39, pp. 143–158. https://doi.org/10.1007/s10695-012-9686-1

    Article  CAS  PubMed  Google Scholar 

  11. Cuevas, N., Zorita, I., Franco, J., et al., Multi-organ histopathology in gobies for estuarine environmental risk assessment: A case study in the Ibaizabal estuary (SE Bay of Biscay), Estuar. Coast. Shelf. Sci., 2016, vol. 179, pp. 145–154. https://doi.org/10.1016/j.ecss.2015.11.023

    Article  CAS  Google Scholar 

  12. Dragan, L., Maistrenko, M., Lyubchenko, G., et al., Aminotransferase activity in the liver of rainbow trout (Oncorhynchus mykiss) under viral infection, Ribogospodars’ka Nauka Ukraïni, 2015, vol. 3, no. 33, pp. 99–106. https://doi.org/10.15407/fsu2015.03.099

    Article  Google Scholar 

  13. Dubinina, E.E., Burmistov, S.O., Khodov, D.A., Porotov, I.G., Oxidative modification of human serum proteins. A method of determining it, Vopr. Med. Khim., 1995, vol. 1, pp. 24–26.

    Google Scholar 

  14. Feist, S., Longshaw, M., Histopathology of fish parasite infections—importance for populations, J. Fish. Biol., 2008, vol. 73, pp. 2143–2160. https://doi.org/10.1111/j.1095-8649.2008.02060.x

    Article  Google Scholar 

  15. Figueiredo-Fernandes, A., Ferreira-Cardoso, J.V., Garcia-Santos, S., et al., Histopathological changes in liver and gill epithelium of Nile tilapia, Oreochromis niloticus, exposed to waterborne copper, Pesq. Vet. Bras., 2007, vol. 27, no. 3, pp. 103–109.

    Article  Google Scholar 

  16. Gaevskaya, A.V., Parazity i bolezni morskikh i okeanicheskikh ryb v prirodnykh i iskusstvennykh usloviyakh (Parasites and Diseases of Marine and Oceanic Fishes in Natural and Culture Conditions), Sevastopol: EKOSI-Gidrofizika, 2004.

  17. Gavruseva, T.V., The study of external pathologies in fish of the south-western coast of the Black Sea, Yug Ross. Ekol. Razv., 2020, vol. 15, no 1, pp. 119–129. https://doi.org/10.18470/1992-1098-2020-1-118-129

    Article  Google Scholar 

  18. Heath, A.G., Water Pollution and Fish Physiology, London: CRC Press, 1995.

    Google Scholar 

  19. Jafarizadeh, M., Peyghan, R., Mohammadian, B., The reports of lesions in kidney and intestine of apparently normal cultured silver carp (Hypophtalmictys molitrix), Adv. Biosci. Biotech., 2012, vol. 3, no. 2, pp. 115–120. https://doi.org/10.4236/abb.2012.32017

    Article  Google Scholar 

  20. Karapetyan, O.S., Pavlenko, L.F., Korotkova, L.I., et al., The effect of the accumulation of priority toxicants in the liver of the round goby Neogobius melanostomus of the Sea of Azov on morphometric and molecular biomarkers of this fish species, Sovrem. Probl. Nauki Obrazovaniya, 2012, vol. 1, Article 200. http://www.science-education.ru/ru/article/view?id=5429

  21. Kaur, S., Khera, K.S., and Kondal, J.K., Heavy metal induced histopathological alterations in liver, muscle and kidney of freshwater cyprinid, Labeo rohita (Hamilton), J. Entom. Zool. Stud., 2018, vol. 6, no. 2, pp. 2137–2144.

    Google Scholar 

  22. Khabbazi, M., Harsij, M., Hedayati, S.A.A., et al., Histopathology of rainbow trout gills after exposure to copper, Iran J. Ichthyol., 2014, vol. 1, no. 3, pp. 191–196.

    Google Scholar 

  23. Kornienko, G.G., Dudkin, S.I., Sergeeva, S.G., et al., Physiological and biochemical characteristics of the Azov and Black Sea fishes undergoing anthropogenic pressure, Vestn. Kamchat. Gos. Tekh. Univ., 2017, vol. 40, pp. 58–66. https://doi.org/10.17217/2079-0333-2017-40-58-66

    Article  Google Scholar 

  24. Korolyuk, M.A., Ivanova, L.I., Mayorova, I.G., and Tokarev, V.E., Method for assaying catalase activity, Lab. Delo, 1988, vol. 1, pp. 16–19.

    Google Scholar 

  25. Kovyrshina, T.B. and Rudneva, I.I., The effects of coastal water pollution of the Black Sea on the blood biomarkers of the round goby Neogobius melanostomus Pallas, 1811 (Perciformes: Gobiidae), Russ. J. Mar. Biol., 2016, vol. 42, no. 1, pp. 58–64. https://doi.org/10.1134/S1063074016010132

    Article  CAS  Google Scholar 

  26. Kruchkov, V.N., Dubovskaya, A.F., and Fomin, I.V., Peculiarities of pathologic morphology of fish liver in modern conditions, Vestn. Astrakhan. Gos. Tekhn. Univ., 2006, vol. 3, no. 32, pp. 94–100.

  27. Lawrence, A.J., Arukwe, A., Moore, M., et al., Molecular/cellular processes and the physiological response to pollution, in Effects of Pollution on Fish, Molecular Effects and Population Responses, Oxford: Blackwell Sci., 2003, pp. 83–133. https://doi.org/10.1002/9780470999691.ch3

  28. Maharajan, A., Rufus Kitto, M., Paruruckumani, P.S., and Ganapiriya, V., Histopathology biomarker responses in Asian sea bass, Lates calcarifer (Bloch) exposed to copper, J. Basic Appl. Zool., 2016, vol. 77, pp. 21–30. https://doi.org/10.1016/j.jobaz.2016.02.001

    Article  CAS  Google Scholar 

  29. Mandych, A.F. and Shaporenko, S.I., Coastal waters—as the indicator of economic activity on the Black Sea coastline, Priroda, 1992, vol. 6, pp. 17–24.

    Google Scholar 

  30. Mironov, O.G., Milovidova, N.Yu., and Kiryukhina, L.N., About maximum allowable concentrations of refined products in bottom sediments of the Black Sea coastal zone, Hydrobiol J., 1986, vol. 22, no. 6, pp. 76–78.

    Google Scholar 

  31. Mitropol’skiy, A.Yu., Bezborodov, A.A., and Ovsyany, E.I., Geokhimiya Chernogo morya (Geochemistry of the Black Sea), Kyiv: Nauk. Dumka, 1982.

  32. Monteiro, S.M., Rocha, E., Fontaínhas-Fernandes, A.A., Sousa, M., Quantitative histopathology of Oreochromis niloticus gills after copper exposure, J. Fish Biol., 2008, vol. 73, pp. 1376–1392. https://doi.org/10.1111/j.1095-8649.2008.02009.x

    Article  CAS  Google Scholar 

  33. Nemova, N.N. and Vysotskaya, R.U., Biokhimicheskaya indikatsiya sostoyaniya ryb (Biochemical Indication of Fish State), Moscow: Nauka, 2004.

  34. Nemova, N.N., Meshcheryakova, O.V., Lysenko, L.A., and Fokina, N.N., The assessment of the fitness of aquatic organisms relying on the biochemical status, Tr. Karel. Nauchn. Tsentra Ross. Akad. Nauk, 2014, vol. 5, pp. 18–29.

    Google Scholar 

  35. Nishikimi, M., Rao, N.A., and Yagi, K., The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen, Biochem. Biophys. Res. Comm., 1972, vol. 46, no. 2, pp. 849–854. https://doi.org/10.1016/S0006-291X(72)80218-3

    Article  CAS  PubMed  Google Scholar 

  36. Normativy kachestva vody, vodnykh ob’’ektov rybokhozyaistvennogo znacheniya, v tom chisle normativov predel’no dopustimykh kontsentratsii vrednykh veshchestv v vodakh, vodnykh ob’’ektov rybokhozyaistvennogo znacheniya (Water Quality Standards for Fishery Water Bodies, Including Norms of Maximum Permissible Concentrations of Toxic Matters in Fishery Basins), Moscow: VNIRO, 2011.

  37. Paruruckumani, P.S., Maha Rajana, A., Ganapiriya, V., and Kumarasamy, P., Bioaccumulation and ultrastructural alterations of gill and liver in Asian sea bass, Lates calcarifer (Bloch) in sublethal copper exposure, Aquat. Liv. Res., 2015, vol. 28, pp. 33–44. https://doi.org/10.1051/alr/2015003

    Article  CAS  Google Scholar 

  38. Petrenko, O.A., Zhugaylo, S.S., and Avdeeva, T.M., Results of long-term investigations on the contamination level in the Azov and Black Seas fishery basin marine environment, Yuzh. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2015, vol. 53, pp. 4–18.

    Google Scholar 

  39. Pravdin, I.F., Rukovodstvo po izucheniyu ryb (Guide to the Fish Study), Moscow: Pisch. Prom-st, 1966.

  40. Promyslovye ryby Rossii (Commercial Fish of Russia), vol. 1, Gritsenko, O.F., Eds. Moscow: VNIRO, 2006.

    Google Scholar 

  41. Rašković, B., Poleksić, V., Skorić, S., et al., Effects of mine tailing and mixed contamination on metals, trace elements accumulation and histopathology of the chub (Squalius cephalus) tissues: Evidence from three differently contaminated sites in Serbia, Ecotoxicol. Environ. Saf., 2018, vol. 153, pp. 238–247. https://doi.org/10.1016/j.ecoenv.2018.01.058

    Article  CAS  PubMed  Google Scholar 

  42. Saraiva, A., Costa, J., Serrão, J., et al., A histology-based fish health assessment of farmed seabass (Dicentrarchus labrax L.), Aquaculture, 2015, vol. 448, pp. 375–381. https://doi.org/10.1016/j.aquaculture.2015.06.028

    Article  Google Scholar 

  43. Sigacheva, T.B. and Omelchenko, S.O., Seasonal dynamics of the antioxidant enzymes activities in blood and the content of toxic elements in the muscle of the knout goby from the Black Sea, Vestn. Tyumen. Gos. Univ. Ekol. Prirodopol’zovanie, 2017, vol. 3, no. 3, pp. 129–140. https://doi.org/10.21684/2411-7927-2017-3-3-129-140

    Article  Google Scholar 

  44. Sigacheva, T. and Skuratovskaya, E., Application of biochemical and morphophysiological parameters of round goby Neogobius melanostomus (Pallas, 1814) for assessment of marine ecological state, Environ. Sci. Poll. Res., 2022, vol. 29, pp. 39323–39330. https://doi.org/10.1007/s11356-022-18962-0

    Article  CAS  Google Scholar 

  45. Sigacheva, T.B., Skuratovskaya, E.N., Kurshakov, S.V., and Ryzhilov, M.S., A Comparative Analysis of Biochemical Parameters in the Liver of Round Goby Neogobius melanostomus (Pallas, 1814) from Two Regions of the Taganrog Bay (Sea of Azov), Russ. J. Mar. Biol., 2022, vol. 48, no. 1, pp. 19–25. https://doi.org/10.1134/S1063074022010114

    Article  CAS  Google Scholar 

  46. Skugoreva, S.G., Ashihmina, T.Y., Fokina, A.I., and Lyalina, E.I., Chemical groups of toxic effect of heavy metals (review), Theor. Prikl. Ekol., 2016, pp. 14–13. https://doi.org/10.25750/1995-4301-2016-1-014-019

  47. Sovga, E. and Mezentseva, I.V., Ecological condition of the central part of Sevastopol Bay depending on the anthropogenic load level, Ecol. Saf. Coast. Shelf. Zones Sea, 2019, vol. 3, pp. 52–60. https://doi.org/10.22449/2413-5577-2019-3-52-60

    Article  Google Scholar 

  48. Stalnaya, I.D. and Garishvili, T.G., Method for determination of malonic dialdehyde using thiobarbituric acid, in Sovremennye metody v biokhimii (Current Methods in Biochemistry), Orechovich, V.N., Ed., Moscow: Medicine Publ., 1977, pp. 66–68.

  49. Stoliar, O.B. and Lushchak, V.I., Environmental pollution and oxidative stress in fish, in Oxidative Stress – Environmental Induction and Dietary Antioxidants, London: IntechOpen, 2012, pp. 131–166. https://doi.org/10.5772/38094

  50. Szilagyi, I., Berkesi, O., Sipiczki, M., et al., Preparation, characterization and catalytic activities of immobilized enzyme mimics, Catal. Lett., 2009, vol. 127, pp. 239–247. https://doi.org/10.1007/s10562-008-9667-2

    Article  CAS  Google Scholar 

  51. Wolf, J.C. and Wheeler, J.R., A critical review of histopathological findings associated with endocrine and non-endocrine hepatic toxicity in fish models, Aquat. Toxicol., 2018, vol. 197, pp. 60–78. https://doi.org/10.1016/j.aquatox.2018.01.013

    Article  CAS  PubMed  Google Scholar 

  52. Yancheva, V., Georgieva, E., Stoyanova, S., et al., A histopathological study on the Caucasian dwarf goby from ananthropogenically loaded site in Hungary using multiple tissuesanalyses, Acta Zoologica, 2019, pp. 1–16. https://doi.org/10.1111/azo.12310

  53. Zavyalova, E.A., Droshnev, A.E., Gulukin, M.I., Kalinina, N.R., Anesthesia of the Rainbow Trout, Ross. Veterinar. Zh., 2012, vol. 4, pp. 22–24.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank to S.I. Perepelitsa (А.О. Kovalevsky Institute of Biology of the Southern Seas of RAS) for the delivery of ichthyological material from the study area.

Funding

This work was conducted under financial support of the Russian Academy of Science research grant № 1023032000049-6-1.6.21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. B. Sigacheva.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Animal-related experiments were conducted in accordance with the NIH Guidelines for the care and use of laboratory animals (http://oacu.od.nih.gov/regs/index.htm). Animal protocols were approved by the Bioethics Commission of Kovalevsky Institute of Biology of the Southern Seas of RAS, Sevastopol, Russia (Protocol No. 2/23 of August 24, 2023).

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavruseva, T.V., Sigacheva, T.B. Comparative Study of Biochemical and Histopathological Parameters of Two Black Sea Goby Species. J. Ichthyol. (2024). https://doi.org/10.1134/S0032945224700048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0032945224700048

Keywords:

Navigation