Skip to main content
Log in

Inner Ear and Otolith Morphology of Climbing Perch Anabas testudineus (Anabantidae)

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

The inner ear position and structure, related parts of the brain and neurocranium, as well as the morphology of the lapillus, sagitta, and asteriscus, are described in climbing perch, an obligate air-breathing fish capable of terrestrial movements. The olfactory bulbs and telencephalon are well developed. The dorsal protrusion with two symmetrical lobes is observed on the dorsal posterior surface of the telencephalon. The almost triangular rear part of the brain capsule and a narrow posterior region of the neurocranium represent the border of the suprabranchial chamber. The pars superior of the inner ear is located along the internal triangular part of the brain capsule, and both crus communis and ductus semicircularis posterior are located close to each other in the narrow extreme rear region of the brain capsule. The sacculus is enclosed in the large oval bony capsule (saccular swelling), and the sagitta is large with the average otolith length–total body length (TL) ratio equal to 0.06. Linear growth of the lapillus and sagitta is characterized by negative allometry in relation to body length. Despite the slow growth rate of the lapillus, its shape substantially changes during the growth of the fish 36–205 mm TL that, most likely, reflects increasing locomotion complexity. Possible adaptations of climbing perch inner ear to terrestrial movements are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Ara, I. and Nabi, M.R., Morphometric and meristic comparison of local and Thai Anabas testudineus, J. Fish., 2018a, vol. 6, no. 2, pp. 599–604. https://doi.org/10.17017/jfish.v6i2.2018.79

    Article  Google Scholar 

  2. Ara, I. and Nabi, M.R., Osteological comparison between local and Thai climbing perch in terms of neurocranium, vertebral column and accessory respiratory organ, Int. J. Fish. Aquat. Stud., 2018b, vol. 6, no. 4, pp. 484–491.

    Google Scholar 

  3. Ari, C., Encephalization and brain organization of mobulid rays (Myliobatiformes, Elasmobranchii) with ecological perspectives, Open Anat. J., 2011, vol. 3, no. 1, pp. 1–13. https://doi.org/10.2174/1877609401103010001

    Article  Google Scholar 

  4. Assis, C.A., The lagenar otoliths of teleosts: Their morphology and its application in species identification, phylogeny and systematics, J. Fish Biol., 2003, vol. 62, no. 6, pp. 1268– 1295. https://doi.org/10.1046/j.1095-8649.2003.00106.x

    Article  Google Scholar 

  5. Assis, C.A., The utricular otoliths, lapilli, of teleosts: Their morphology and relevance for species identification and systematics studies, Sci. Mar., 2005, vol. 69, no. 2, pp. 259– 273.

    Article  Google Scholar 

  6. Bano, F. and Serajuddin, M., Sulcus and outline morphometrics of sagittal otolith variability in freshwater fragmented populations of dwarf gourami Trichogaster lalia (Hamilton, 1822), Limnologica, 2021, vol. 86, 125842. https://doi.org/10.1016/j.limno.2020.125842

    Article  Google Scholar 

  7. Bardhan, I., Roy, S., Mukhopadhyay, A., and Tripathy, B., Ultrastructure of the sagitta otolith in different body size groups of climbing perch Anabas testudineus (Anabantidae), J. Ichthyol., 2021, vol. 61, no. 1, pp. 166–174. https://doi.org/10.1134/S0032945221010033

    Article  Google Scholar 

  8. Barton, R.A., Purvis, A., and Harvey, P.H., Evolutionary radiation of visual and olfactory brain systems in primates, bats and insectivores, Phil. Trans. Res. Soc. London Bull., 1995, vol. 348, no. 1326, pp. 381–392. https://doi.org/10.1098/rstb.1995.0076

    Article  CAS  Google Scholar 

  9. Bersa, S., Growth and Bioenergetics of Anabas testudineus (Bloch), an Air Breathing Climbing Perch of South-East Asia, New Delhi: Narendra Publishing House, 1997.

    Google Scholar 

  10. Binoy, V.V., Kasturirangan, R., and Sinha, A., Sensory cues employed for the acquisition of familiarity-dependent recognition of a shoal of conspecifics by climbing perch (Anabas testudineus Bloch), J. Biosci., 2015, vol. 40, pp. 225–232. https://doi.org/10.1007/s12038-015-9529-1

    Article  CAS  PubMed  Google Scholar 

  11. Boyle, R., Ehsanian, R., Mofrad, A., et al., Morphology of the utricular otolith organ in the toadfish, Opsanus tau, J. Comp. Neurol., 2018, vol. 526, no. 6, pp. 1571–1588. https://doi.org/10.1002/cne.24429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Briscoe, S.D. and Ragsdale, S.W., Evolution of the chordate telencephalon, Curr. Biol., 2019, vol. 29, no. 13, pp. R647–R662. https://doi.org/10.1016/j.cub.2019.05.026

    Article  CAS  PubMed  Google Scholar 

  13. Cruz, A. and Lombarte, A., Otolith size and its relationship with color patterns and sound production, J. Fish Biol., 2004, vol. 65, pp. 1512–1525. https://doi.org/10.1111/J.0022-1112.2004.00558.X

    Article  Google Scholar 

  14. Datta, N.C., Saha, A.K., and Das, A., Investigation on the morphology of the olfactory apparatus of Anabas testudineus (Bloch), J. Inland Fish. Soc. India, 1976, vol. 8, pp. 13–18.

    Google Scholar 

  15. Davenport, J. and Abdul Matin, A.K.M., Terrestrial locomotion in the climbing perch, Anabas testudineus (Bloch) (Anabantidea, Pisces), J. Fish Biol., 1990, vol. 37, no. 1, pp. 175–184. https://doi.org/10.1111/j.1095-8649.1990.tb05938.x

    Article  Google Scholar 

  16. de Bruin, J.P.C., Telencephalon and behavior in teleost fish, in Comparative Neurology of the Telencephalon, Ebbesson, S.O.E., Ed., New York: Springer, 1980, pp. 175–201. https://doi.org/10.1007/978-1-4613-2988-6_7

  17. Demski, L.S. and Northcutt, R.G., The brain and cranial nerves of the white shark: An evolutionary perspective, in Great White Sharks: the Biology of Carcharodon carcharias, Klimley, A.P. and Ainley, D.G., Eds., San Diego, CA: Academic Press, 1996, pp. 121–130.

    Google Scholar 

  18. Froese, R. and Pauly, D., Eds., FishBase, World Wide Web Electronic Publication, Version 06/2022. www.fishbase.org.

  19. Gaemers, P.A.M., Taxonomic position of Cichlidae (Pisces, Perciformes) as demonstrated by the morphology of their otoliths, Neth. J. Zool., 1984, vol. 34, no. 4, pp. 566– 595.

    Article  Google Scholar 

  20. Ghanbarifardi, M., Gut, C., Gholami, Z., et al., Possible link between the structure of otoliths and amphibious mode of life of three mudskipper species (Teleostei: Gobioidei) from the Persian Gulf, Zool. Middle East, 2020, vol. 66, no. 4, pp. 311–320. https://doi.org/10.1080/09397140.2020.1805140

    Article  Google Scholar 

  21. Hamdani, E.H. and Døving, K.B, The functional organization of the fish olfactory system, Prog. Neurobiol., 2007, vol. 82, no. 2, pp. 80–86. https://doi.org/10.1016/j.pneurobio.2007.02.007

    Article  CAS  PubMed  Google Scholar 

  22. Hilal, S. and Hilal, F., Morphological variations in the brain of some selected Teleosts, J. Pharm. Innov., 2019, vol. 8, no. 6, pp. 316–320.

    Google Scholar 

  23. Horn, Â.C.M. and Rasia-Filho, A.A., The cytoarchitecture of the telencephalon of Betta splendens Regan 1910 (Perciformes: Anabantoidei) with a stereological approach to the supracommissural and postcommissural nuclei, Anat. Rec., 2018, vol. 301, pp. 88–110. https://doi.org/10.1002/ar.23699

    Article  Google Scholar 

  24. Horodysky, A.Z., Brill, R.W., Fine, M.L., Musick, J.A., and Latour, R.J., Acoustic pressure and particle motion thresholds in six sciaenid fishes, J. Exp. Biol., 2008, vol. 211, pp. 1504–1511.

    Article  PubMed  Google Scholar 

  25. Huber, R., van Staaden, M.J., Kaufman, L.S., and Liem, K.F., Microhabitat use, trophic patterns and the evolution of brain structure in African cichlids, Brain Behav. Evol., 1997, vol. 50, no 3, pp. 167–182. https://doi.org/10.1159/000113330

    Article  CAS  PubMed  Google Scholar 

  26. Huesa, G., Anadón, R., Folgueira, M., and Yáñez, J., Evolution of the pallium in fishes, in Encyclopedia of Neuroscience, Binder, M.D., Hirokawa, H., and Windhors, U., Eds., Berlin: Springer, 2009, pp. 1400–1404. https://doi.org/10.1007/978-3-540-29678-2_3166

  27. Hussein, M.N. and Cao, X., Brain anatomy and histology in Teleosts, Benha Med. J., 2018, vol. 35, no. 2, pp. 446–463. https://doi.org/10.21608/bvmj.2018.96440

    Article  Google Scholar 

  28. Ito, H., Ishikawa, Y., Yoshimoto, M., and Yamamoto, N., Diversity of brain morphology in Teleosts: Brain and ecological niche, Brain Behav. Evol., 2007, vol. 69, pp. 76–86. https://doi.org/10.1159/000095196

    Article  PubMed  Google Scholar 

  29. Jaramillo, A.M., Tombari, A.D., Dura, V.B., et al., Otolith eco-morphological patterns of benthic fishes from the coast of Valencia (Spain), Thalassas, 2014, vol. 30, pp. 57–66.

    Google Scholar 

  30. Johansen, K., Air breathing in fishes, in Fish Physiology, Hoar, W.S. and Randell, D.J., Eds., New York: Academic, 1970, vol. IV, pp. 361–411.

    Google Scholar 

  31. Kasumyan, A.O., The vestibular system and sense of equilibrium in fish, J. Ichthyol., 2004, vol. 44, suppl. 2, pp. S224–S268.

    Google Scholar 

  32. Kasumyan, A.O., Structure and function of auditory system in fish, Ibid., 2005, vol. 45, suppl. 2, pp. S223–S270.

  33. Kasumyan, A.O., Sounds and sound production in fishes, Ibid., 2008, vol. 48, pp. 981–1030. https://doi.org/10.1134/S0032945208110039

    Article  Google Scholar 

  34. Kasumyan, A.O. and Mikhailova, E.S., Sound producing in the three-spot gourami Trichopodus trichopterus (Osphronemidae) during feeding, Ibid., 2022, vol. 62, pp. 968–976. https://doi.org/10.1134/S003294522205006X

    Article  Google Scholar 

  35. Kasumyan, A.O., Pashchenko, N.I., and Oanh, L.T., Morphology of the olfactory organ in the climbing perch (Anabas testudineus, Anabantidae, Perciformes), Biol. Bull. Russ. Acad. Sci., 2021, vol. 48, pp. 1298–1313. https://doi.org/10.1134/S1062359021080148

    Article  CAS  Google Scholar 

  36. Kiyohara, S., Sakata, Y., Yoshitomi, T., and Tsukahara, J., The ‘goatee’ of goatfish: Innervation of taste buds in the barbels and their representation in the brain, Proc. Biol. Sci., 2002, vol. 269, pp. 1773–1780. https://doi.org/10.1098/rspb.2002.2086

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kumar, K., Lalrinsanga, P., Sahoo, M., et al., Length-weight relationship and condition factor of Anabas testudineus and channa species under different culture systems, World J. Fish Mar. Sci., 2013, vol. 5, no. 1, pp. 74–78. https://doi.org/10.5829/idosi.wjfms.2013.05.01.64201

    Article  Google Scholar 

  38. Ladich, F. and Popper, A.N., Comparison of the inner ear ultrastructure between teleost fishes using different channels for communication, Hear Res., 2001, vol. 154, no. 1–2, pp. 62–72. https://doi.org/10.1016/S0378-5955(01)00217-9

    Article  CAS  PubMed  Google Scholar 

  39. Ladich, F. and Schulz-Mirbach, T., Diversity in fish auditory systems: One of the riddles of sensory biology, Front. Ecol. Evol., 2016, vol. 4, art. ID 28. https://doi.org/10.3389/fevo.2016.00028

    Article  Google Scholar 

  40. Ladich, F., Bischof, C., Schleinzer, G., and Fuchs, A., Intra- and interspecific differences in agonistic vocalizations in croaking gouramis (genus: Trichopsis, Anabantoidei, Teleostei), Bioacoustics, 1992, vol. 4, pp. 131–141. https://doi.org/10.1080/09524622.1992.9753212

    Article  Google Scholar 

  41. Lastein, S., Hamdani, A.H., and Døving K.B., Olfactory discrimination of pheromones, in Fish Pheromones and Related Cues, Sorensen, P.W. and Wisenden, B.D., Eds., Oxford: John Wiley and Sons, Inc., 2015, pp. 159–195. https://doi.org/10.1002/9781118794739.ch8

  42. Liem, K.F., The Comparative Osteology and Phylogeny of the Anabantoidei (Teleostei, Pisces), Urbana: Univ. of Illinois, 1963. https://doi.org/10.5962/bhl.title.50281

  43. Liem, K.F., Functional design of the air ventilation apparatus and overland excursions by teleosts, Fieldiana, Zoology, New Ser., 1987, vol. 37, pp. 1–29.

    Google Scholar 

  44. Lin, C.-H. and Chang, C.-W., Otolith Atlas of Taiwan Fishes, NMMBA Atlas Series, vol. 12, Pingtung: Natl. Mus. Mar. Biol. Aquarium, 2012.

  45. Lychakov, D.V., Otoliths in cyclostomates and fishes: Evolution and some quantitative rations, Sens. Syst., 1994, vol. 8, no. 3–4, pp. 7–15.

    Google Scholar 

  46. Mahé, K., Ider, D., Massaro, A., et al., Directional bilateral asymmetry in otolith morphology may affect fish stock discrimination based on otolith shape analysis, ICES J. Mar. Sci., 2019, vol. 76, pp. 232–243. https://doi.org/10.1093/icesjms/fsy163

    Article  Google Scholar 

  47. Mahé, K., MacKenzie, K., Ider, D., et al., Directional bilateral asymmetry in fish otolith: A potential tool to evaluate stock boundaries?, Symmetry, 2021, vol. 13, Article 987. https://doi.org/10.3390/sym13060987

    Article  Google Scholar 

  48. Makeyeva, A.P., Embriologiya ryb (Embryology of Fishes), Moscow: Mosk. Gos. Univ., 1992.

  49. Mawa, Z., Hossain, M.Y., Hasan, M.R., and Asaduzzaman, M., Reproductive aspects of Anabas testudineus collected from the Gajner Beel wetland in Bangladesh: Implications for its conservation under changing eco-climatic conditions and suggestions for best aquaculture practice, Environ. Sci. Pollut. Res. Int., 2022, vol. 29, no. 44, pp. 66277–66294. https://doi.org/10.1007/s11356-022-20423-7

    Article  CAS  PubMed  Google Scholar 

  50. Mille, T., Mahe, K., Villanueva, M.C., et al., Sagittal otolith morphogenesis asymmetry in marine fishes, J. Fish Biol., 2015, vol. 87, no. 3, pp. 646–663. https://doi.org/10.1111/jfb.12746

    Article  CAS  PubMed  Google Scholar 

  51. Nieuwenhuys, R., The forebrain of actinopterygians revisited, Brain, Behav. Evol., 2009, vol. 73, no. 4, pp. 229–252. https://doi.org/10.1159/000225622

    Article  PubMed  Google Scholar 

  52. Nikonorov, S.I., Perednii mozg i povedenie ryb (Forebrain and Fish Behavior), Moscow: Nauka, 1982.

  53. Palmer, A.R., Fluctuating asymmetry analyses: A primer, in Developmental Instability: Its Origins and Evolutionary Implications, Markow, T.A., Ed., Dordrecht: Springer-Verlag, 1994, pp. 335–364.

    Google Scholar 

  54. Palmer, A.R. and Strobeck, C., Fluctuating asymmetry: measurement, analysis, patterns, Ann. Rev. Ecol. Syst., 1986, vol. 17, pp. 391–421. https://doi.org/10.1146/ANNUREV.ES.17.110186.002135

    Article  Google Scholar 

  55. Palmer, M., Linde, M., and Morales-Nin, B., Disentangling fluctuating asymmetry from otolith shape, Mar. Ecol. Prog. Ser., 2010, vol. 399, pp. 261–272.

    Article  Google Scholar 

  56. Pavlov, D.A., Otolith morphology and relationships of several fish species of the suborder Scorpaenoidei, J. Ichthyol., 2021, vol. 61, no. 1, pp. 33–47. https://doi.org/10.1134/S0032945221010100

    Article  Google Scholar 

  57. Pavlov, D.A., Feeding-related skull structures of climbing perch Anabas testudineus (Anabantidae), Ibid., 2023, vol. 63, no. 4, pp. 788–796. https://doi.org/10.1134/S0032945223040148

  58. Pavlov, E.D., Movements of climbing perch Anabas testudineus out of the water, 2021. https://disk.yandex.ru/i/T2OL5xXp_EA92Q.

  59. Pavlov, E.D., Pavlov, D.S., Ganzha, E.V., Sharova, M.M., and Tran Duc Dien, Effect of thiourea on behavior of climbing perch Anabas testudineus in water flow, J. Ichthyol., 2018, vol. 58, pp. 710–716. https://doi.org/10.1134/S0032945218050168

    Article  Google Scholar 

  60. Pavlov, E.D., Pavlov, D.S., Ganzha, E.V., et al., Influence of water level on the exit of climbing perch Anabas testudineus out of the water and specific features of its movements, Ibid., 2021, vol. 61, pp. 752–757. https://doi.org/10.1134/S003294522105012X

    Article  Google Scholar 

  61. Popper, A.N. and Fay, R.R., Rethinking sound detection by fishes, Hear. Res., 2011, vol. 273, nos. 1–2, pp. 25–36. https://doi.org/10.1016/j.heares.2009.12.023

    Article  PubMed  Google Scholar 

  62. Popper, A.N., Fay, R.R., Platt, C., and Sand, O., Sound detection mechanisms and capabilities of teleost fishes, in Sensory Processing in Aquatic Environments, Collin, S.P. and Marshall, N.J., Eds., New York: Springer-Verlag, 2003, pp. 3–38.

    Google Scholar 

  63. Popper, A.N., Ramcharitar, J., and Campana, S.E., Why otoliths? Insights from inner ear physiology and fisheries biology, Mar. Freshwater Res., 2005, vol. 56, no. 5, pp. 497–504. https://doi.org/10.1071/MF04267

    Article  Google Scholar 

  64. Priyatha, C.V. and Chitra, K.C., Evaluation of the reproductive cycle and gonadal development in the climbing perch, Anabas testudineus (Bloch, 1792) in captivity, J. Fish., 2022, vol. 10, no. 1, Article 101206. https://doi.org/10.17017/j.fish.364

    Article  CAS  Google Scholar 

  65. Putland, R.L., Montgomery, J.C., and Radford, C.A., Ecology of fish hearing, J. Fish. Biol., 2019, vol. 95, no. 1, pp. 39–52. https://doi.org/10.1111/jfb.13867

    Article  PubMed  Google Scholar 

  66. Rahmani, A.R. and Khan, S.M., The olfactory organ in a few Indian teleosts, Curr. Sci., 1981, vol. 50, no. 7, pp. 329–331. http://www.jstor.org/stable/24085788

    Google Scholar 

  67. Ramcharitar, J.U., Deng, X., Ketten, D., and Popper, A.N., Form and function in the unique inner ear of a teleost: The silver perch (Bairdiella chrysoura), J. Comp. Neurol., 2004, vol. 475, pp. 531–539. https://doi.org/10.1002/cne.20192

    Article  PubMed  Google Scholar 

  68. Ramcharitar, J.U., Dennis, M., Higgs, D.M., and Popper, A.N., Audition in sciaenid fishes with different swim bladder-inner ear configurations, J. Acoust. Soc. Am., 2006, vol. 119, pp. 439–443. https://doi.org/10.1121/1.2139068

    Article  PubMed  Google Scholar 

  69. Samoilov, K.Yu. and Tran Duc Dien, Morphological plasticity and biological patterns of the climbing perch Anabas testudineus from different types of water bodies in Khánh Hòa Province, Vietnam, Inland Water Biol., 2022, vol. 15, no. 3, pp. 217–226. https://doi.org/10.1134/S1995082922020109

    Article  Google Scholar 

  70. Satou, M., Synaptic organization of the olfactory bulb and its central projection, in Fish Chemoreception, Hara, T.J., Ed., London: Chapman and Hall, 1992, pp. 40–59.

    Google Scholar 

  71. Schneider, H., Die Bedeutung der Atemhöhle der Labyrinthfische für ihr Hörvermögen, Z. Vergl. Physiol., 1942, vol. 29, pp. 172–194. https://doi.org/10.1007/BF00304447

    Article  Google Scholar 

  72. Schroeder, D.M., The telencephalon of Teleosts, in Comparative Neurology of the Telencephalon, Ebbesson S.O.E., Ed., New York: Plenum Press, 1980, pp. 99–115.

    Google Scholar 

  73. Schulz-Mirbach, T., Ladich, F., Riesch, R., and Plath, M., Otolith morphology and hearing abilities in cave- and surface-dwelling ecotypes of the Atlantic molly, Poecilia mexicana (Teleostei: Poeciliidae), Hear. Res., 2010, vol. 267, no. 1, pp. 137–148. https://doi.org/10.1016/j.heares.2010.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  74. Schulz-Mirbach, T., Ladich, F., Plath, M., Metscher, B.D., and Heß, M., Are accessory hearing structures linked to inner ear morphology? Insights from 3D orientation patterns of ciliary bundles in three cichlid species, Front. Zool., 2014, vol. 11, Article ID 25. https://doi.org/10.1186/1742-9994-11-25

    Article  PubMed  PubMed Central  Google Scholar 

  75. Secor, D.H., Dean, J.M., and Laban, E.H., Manual for Otolith Removal and Preparation for Microstructural Examination, Washington, DC: Electr. Power Res. Inst., 1991.

    Google Scholar 

  76. Seshagiri, B.V. and Raju, K.V., Validity of Anabas oligolepis Bleeker, 1855 and Coius cobojius Hamilton-Buchanan, 1822 a junior synonym of A. testudineus (Bloch, 1795) (Osteichthyes: Anabantidae), J. Aqua. Biol., 2001, vol. 16, no. 2, pp. 29–31.

    Google Scholar 

  77. Srinu, G., Padmavathi, P., and Chatla, D., Identification and validation of Anabas spp. (Osteichthyes: Anabantidae) through morphology and DNA barcoding from Lake Kolleru, Andhra Pradesh, India, J. Coast. Res., Special Issue, 2019, no. 86, pp. 142–148. https://doi.org/10.2112/SI86-022.1

  78. Talwar, P.K. and Jhingran A.G., Inland Fishes of India and Adjacent Countries, Rotterdam: A.A. Balkema, 1991, vol. 2.

    Google Scholar 

  79. Urick, R.J., Principles of Underwater Sound, New York: McGraw-Hill Inc., 1983.

    Google Scholar 

  80. Van Valen, L., A study of fluctuating asymmetry, Evolution, 1962, vol. 16, no. 2, pp. 125–142. https://doi.org/10.1111/j.1558-5646.1962.tb03206.x

    Article  Google Scholar 

  81. Vinogradskaya, M.I., Mikhailova, E.S., and Kasumyan, A.O., Taste preferences, orosensory food testing, and sound production during feeding by the pearl gourami Trichopodus leerii (Osphronemidae), J. Ichthyol., 2017, vol. 57, no 3, pp. 445–457. https://doi.org/10.1134/S0032945217030122

    Article  Google Scholar 

  82. Zakharov, V.M., Asimmetriya zhivotnykh (populyatsionno-fenogeneticheskii podkhod) (Animal Asymmetry: Population–Phenogenetic Approach), Moscow: Nauka, 1987.

  83. Zworykin, D.D., Are terrestrial movements of amphibious fish lateral migrations?, Biol. Bull. Rev., 2021, vol. 11, no. 5, pp. 520–532. https://doi.org/10.1134/S2079086421050091

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank L.T.K. Oanh (Coastal Branch of Joint Russia-Vietnam Tropical Science and Technology Research Center, Nha Trang, Vietnam) for help with fish collection. We thank three anonymous reviewers for their valuable comments on the manuscript.

Funding

The study was conducted according to the scientific project of the State target of Moscow State University (CITIS no. 121032300100-5) and was funded by the Russia-Vietnam Tropical Science and Technology Research Center, the project “Ecolan E3.2, task 2”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Pavlov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The study was conducted in accordance with the Federal Law No. 498-FZ (December 27, 2018) (amended on July 24, 2023) “On responsible treatment of animals and amendments to certain legislative acts of the Russian Federation”. All applicable international guidelines for the care and use of animals were followed (http://oacu.od.nih.gov/regs/index.htm).

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, D.A., Kasumyan, A.O. Inner Ear and Otolith Morphology of Climbing Perch Anabas testudineus (Anabantidae). J. Ichthyol. 64, 16–29 (2024). https://doi.org/10.1134/S0032945224010090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945224010090

Keywords:

Navigation