Skip to main content
Log in

Internal Structure of a Fish School

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

Regularities of arrangement of fish in schools have been considered. In migrating isotropic schools, the internal structure is most ordered, the fish in them are oriented strictly parallel to each other, the partners are located at an equal distance and with a characteristic (rhomboid) displacement relative to each other in the horizontal plane. The location of fish in such schools is influenced by the physical forces of hydrodynamic vortices created by swimming fish (hydrodynamic wake). In isotropic schools, fish maintain a certain distance between themselves (linear distance) and a certain displacement (frontal, vertical and horizontal) relative to each other. The average density of schools varies greatly and depends on the size of fish, the swimming velocity or the flow of water to overcome, the level of illumination and other factors. In large schools, the average density of fish is higher in the center and decreases towards the periphery of a school. Fish in schools form intra-school subgroups of three to five individuals, within which fish are placed strictly in a horizontal plane, or with a slight vertical displacement. The mutual arrangement of fish in a subgroup is constantly changing, and the distance between partners is less than the distance to any individual of another subgroup. Existing data on individual spatial preferences of fish in schools has been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Ali, J.R., Deacon, A.E., Mahabir, K., et al., Heterospecific shoaling in an invasive poeciliid: Shared history does not affect shoal cohesion, Anim. Behav., 2018, vol. 138, pp. 1–8. https://doi.org/10.1016/j.anbehav.2018.01.023

    Article  Google Scholar 

  2. Allan, J.R., The influence of species composition on behavior in mixed-species cyprinid shoals, J. Fish. Biol., 1986, vol. 29, Suppl. A, pp. 97–106. https://doi.org/10.1111/j.1095-8649.1986.tb05002.x

  3. Aoki, I., An analysis of the schooling behavior of fish: Internal organization and communication process, Bull. Ocean Res. Inst. Univ. Tokyo, 1980.no. 12, pp. 1–65.

  4. Aoki, I., Inagaki, T., and Long, L.V., Measurements of the three-dimensional structure of free-swimming pelagic fish schools in a natural environment, Bull. Jpn. Soc. Sci. Fish., 1986, vol. 52, no. 12, pp. 2069–2077.https://doi.org/10.2331/suisan.52.2069

    Article  Google Scholar 

  5. Ashraf, I., Bradshaw, H., Ha, T.-T., et al., Simple phalanx pattern leads to energy saving in cohesive fish schooling, PNAS, 2017, vol. 114, no. 36, pp. 9599–9604. https://doi.org/10.1073/pnas.1706503114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Azuma, T. and Iwata, M., Influences of illumination intensity of the nearest neighbour distance in coho salmon Oncorhynchus kisutch, J. Fish. Biol., 1994, vol. 45, no. 6, pp. 1113–1118. https://doi.org/10.1111/j.1095-8649.1994.tb01077.x

    Article  Google Scholar 

  7. Ballerini, M., Cabibbo, N., Candelier, R., et al., Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, PNAS, 2008, vol. 105, no. 4, pp. 1232–1237. https://doi.org/10.1073/pnas.0711437105

    Article  PubMed  PubMed Central  Google Scholar 

  8. Barber, I., Huntingford, F.A., and Crompton, D.W.T., The effect of hunger and cestode parasitism on the shoaling decisions of small freshwater fish, J. Fish. Biol., 1995, vol. 47, no. 3, pp. 524–536. https://doi.org/10.1111/j.1095-8649.1995.tb01919.x

    Article  Google Scholar 

  9. Belyayev, V.V. and Zuyev, G.V., Hydrodynamic hypothesis of school formation in fishes, Probl. Ichthyol., 1969, vol. 9, no. 4, pp. 578–584.

    Google Scholar 

  10. Breder, C.M., Studies on the structure of the fish school, Bull. AMNH, 1951, vol. 98, pp. 1–27.

    Google Scholar 

  11. Breder, C.M., Vortices and fish schools, Zoologica, 1965, vol. 50, no. 10, pp. 97–114. https://doi.org/10.5962/p.206663

    Article  Google Scholar 

  12. Breder, C.M., On the survival value of fish schools, Zoologica, 1967, vol. 52, no. 4, pp. 25–40. https://doi.org/10.5962/p.203258

    Article  Google Scholar 

  13. Burns, A.L.J., Herbert-Read, J.E., Morrell, L.J., and Ward, A.J.W., Consistency of leadership in shoals of mosquitofish (Gambusia holbrooki) in novel and in familiar environments, PLOS ONE, 2012, vol. 7, no. 5, Article e36567. https://doi.org/10.1371/journal.pone.0036567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cullen, J.M., Shaw, E., and Baldwin, H.A., Methods for measuring the three-dimensional structure of fish schools, Anim. Behav., 1965, vol. 13, no. 4, pp. 534–543. https://doi.org/10.1016/0003-3472(65)90117-X

    Article  CAS  PubMed  Google Scholar 

  15. DeBlois, E.M. and Rose, G.A., Cross-shoal variability in the feeding habits of migrating Atlantic cod (Gadus morhua), Oecologia, 1996, vol. 108, no. 1, pp. 192–196. https://doi.org/10.1007/BF00333231

    Article  PubMed  Google Scholar 

  16. Domenici, P., Batty, R.S., and Similä, N., Spacing of wild schooling herring while encircled by killer whales, J. Fish. Biol., 2000, vol. 57, no. 3, pp. 831–836. https://doi.org/10.1111/j.1095-8649.2000.tb00278.x

    Article  Google Scholar 

  17. Foote, K.G. and Ona, E., Tilt angles of schooling penned saithe, ICES J. Mar. Sci., 1987, vol. 43, no. 2, pp. 118–121. https://doi.org/10.1093/icesjms/43.2.118

    Article  Google Scholar 

  18. Galaktionova, A.I. and Galaktionov, G.Z., Structure of the forebrain and features of schooling behavior of the rock grenadier, Coryphaenoides rupestris, of the North Atlantic ridge, J. Ichthyol., 1990, vol. 30, no. 4, pp. 160–167.

    Google Scholar 

  19. Gan’kov A.A., Tokarev A.K., Yudovich Yu.B. Exploration and fishing of Sakhalin pre-spawning herring using hydroacoustic devices, Rybn. Khoz-vo, 1953, no. 8, pp. 14–18.

  20. Hansen, M.J., Schaerf, T.M., Krause, J., and Ward, A.J.W., Crimson spotted rainbowfish (Melanotaenia duboulayi) change their spatial position according to nutritional requirement, PLOS ONE, 2016, vol. 11, no. 2. Article e0148334. https://doi.org/10.1371/journal.pone.0148334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Healey, M.C. and Prieston, R., The interrelationships among individuals in a fish school, Fish. Res. Board. Can. Tech. Rep., 1973, no. 389, pp. 1–15.

  22. Hunter, J.R., Procedure for the analysis of schooling behaviour, J. Fish. Res. Board Can., 1966, vol. 23, no. 4, pp. 547–562. https://doi.org/10.1139/f66-046

    Article  Google Scholar 

  23. Inagaki, T., Sakamoto, W., Aoki, I., and Kuroki, T., Studies on the schooling behaviour of fish. III. Mutual relationships between speed and form in schooling, Bull. Jpn. Soc. Sci. Fish., 1976, vol. 42, no. 6, pp. 629–635. https://doi.org/10.2331/suisan.42.629

    Article  Google Scholar 

  24. Inoue, M., Hasegawa, E., and Arimoto, T., A study on the structure of fish schools in Rhodeus ocellatus and Moroco steindachneri by the photographic observation, La mer, 1979, vol. 17, no. 2, pp. 91–103.

    Google Scholar 

  25. Johnson, P.O., The wash sprat fishery, Fish. Invest. Lond. Ser., 1970, vol. 26, no. 4, pp. 1–77.

    Google Scholar 

  26. Keenleyside, M.H.A., Diversity and Adaptation in Fish Behavior, Heidelberg: Springer-Verlag, 1979.

    Book  Google Scholar 

  27. Kent, M.I.A., Lukeman, R., Lizier, J.T., and Ward, A.J.W., Speed-mediated properties of schooling, R. Soc. Open Sci., 2019, vol. 6, no. 2, Article 181482. https://doi.org/10.1098/rsos.181482

    Article  PubMed  PubMed Central  Google Scholar 

  28. Killen, S.S., Marras, S., Steffensen, J.F., and McKenzie, D.J., Aerobic capacity influences the spatial position of individuals within fish schools, Proc. R. Soc. Lond. B., 2011, vol. 279, no. 1727, pp. 357–364. https://doi.org/10.1098/rspb.2011.1006

  29. Konstantinov, K.G., On the schooling of some bottom fish of the northern basin, in Izuchenie povedeniya ryb v svyazi s sovershenstvovaniem orudii lova (Study of Fish Behavior in Connection with the Improvement of Their Fishing Technique), Moscow: Nauka, 1977, pp. 110–115.

  30. Krause, J., The relationship between foraging and shoal position in a mixed shoal of roach (Rutilus rutilus) and chub (Leuciscus cephalus): A field study, Oecologia, 1993.vol. 93, no. 3, pp. 356–359. https://doi.org/10.1007/BF00317878

    Article  PubMed  Google Scholar 

  31. Krause, J. and Godin, J.-G.J., Influence of parasitism on the shoaling behaviour of banded killifish, Fundulus diaphanus, Can. J. Zool., 1994. vol. 72, no. 10, pp. 1775–1779. https://doi.org/10.1139/z94-240

    Article  Google Scholar 

  32. Krause, J. and Seebacher, F., Collective behaviour: Physiology determines position, Curr. Biol., 2018, vol. 28, no. 8, pp. R351–R354. https://doi.org/10.1016/j.cub.2018.02.070

    Article  CAS  PubMed  Google Scholar 

  33. Krause, J., Bumann, D., and Todt, D., Relationship between the position preference and nutritional state of individuals in shoals of juvenile roach (Rutilus rutilus), Behav. Ecol. Sociobiol., 1992, vol. 30, nos. 3–4, pp. 177–180. https://doi.org/10.1007/BF00166700

    Article  Google Scholar 

  34. Krause, J., Hoare, D.J., Krause, S., et al., Leadership in fish shoals, Fish Fish., 2000, vol. 1, no. 1, pp. 82–89. https://doi.org/10.1111/j.1467-2979.2000.tb00001.x

    Article  Google Scholar 

  35. Kuhlmann, D.H.H. and Karst, H., Freiwasserbeobachtungen zum Verhalten von Tobiasfischschwärmen (Ammodytidae) in der westlichen Ostsee, Z. Tierpsychol., 1967, vol. 24, no. 3, pp. 282–297. https://doi.org/10.1111/j.1439-0310.1967.tb00580.x

    Article  CAS  PubMed  Google Scholar 

  36. Leblond, C. and Reebs, S.G., Individual leadership and boldness in shoals of golden shiners (Notemigonus crysoleucas), Behaviour, 2006, vol. 143, no. 10, pp. 1263–1280. https://doi.org/10.1163/156853906778691603

    Article  Google Scholar 

  37. Marras, S. and Domenici, P., Schooling fish under attack are not all equal: Some lead, others follow, PLOS ONE, 2013, vol. 8, no. 6, Article e65784. https://doi.org/10.1371/journal.pone.0065784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McCutchen, C.W., Flow visualization with stereo shadowgraphs of stratified fluid, J. Exp. Biol., 1976, vol. 65, no. 1, pp. 11–20. https://doi.org/10.1242/jeb.65.1.11

    Article  CAS  PubMed  Google Scholar 

  39. McLean, S., Persson, A., Norin, T., and Killen, S.S., Metabolic costs of feeding predictively alter the spatial distribution of individuals in fish schools, Curr. Biol., 2018, vol. 28, no. 7, pp. 1144–1149. https://doi.org/10.1016/j.cub.2018.02.043

    Article  CAS  PubMed  Google Scholar 

  40. Middlemiss, K.L., Cook, D.G., Jerrett, A.R., and Davison, W., Effects of group size on school structure and behaviour in yellow-eyed mullet Aldrichetta forsteri, J. Fish. Biol., 2018, vol. 92, no. 5, pp. 1255–1272. https://doi.org/10.1111/jfb.13581

    Article  CAS  PubMed  Google Scholar 

  41. Mikheev, V.N., Relationship between nutrition and distribution and downstream migration of fish underyearlings in a reservoir, in Pokatnaya migratsiya ryb (Downstream Migration of Fish), Moscow: Inst. Evol. Morfol. Ekol. Zhivotnykh Akad. Nauk SSSR, 1985, pp. 87–108.

  42. Misund, O.A., Dynamics of moving masses: Variability in packing density, shape, and size among herring, sprat, and saithe schools, ICES J. Mar. Sci., 1993, vol. 50, no. 2, pp. 145–160. https://doi.org/10.1006/jmsc.1993.1016

    Article  Google Scholar 

  43. Misund, O.A. and Floen, S., Packing density structure of herring schools, ICES Mar. Sci. Symp., 1993, vol. 196, pp. 26–29.

    Google Scholar 

  44. Misund, O.A., Aglen, A., and Frønæs, E., Mapping the shape, size, and density of fish schools by echo integration and a high-resolution sonar, ICES J. Mar. Sci., 1995, vol. 52, no. 1, pp. 11–20. https://doi.org/10.1016/1054-3139(95)80011-5

    Article  Google Scholar 

  45. Misund, O.A., Fernö, A., Pitcher, T., and Totland, B., Tracking herring school with a high resolution sonar. Variations in horizontal area and relative echo intensity, ICES J. Mar. Sci., 1998. vol. 55, no. 1, pp. 58–66. https://doi.org/10.1006/jmsc.1997.0228

    Article  Google Scholar 

  46. Misund, O.A., Coetzee, J.C., Fréon, P., et al., Schooling behaviour of sardine Sardinops sagax in False Bay, South Africa, Afr. J. Mar. Sci., 2003. vol. 25, no. 1, pp. 185–193. https://doi.org/10.2989/18142320309504009

    Article  Google Scholar 

  47. Morgan, I.E. and Kramer, D.L., The social organization of adult blue tangs, Acanthurus coeruleus, on a fringing reef, Barbados, West Indies, Environ. Biol. Fish., 2004. vol. 71, no. 3, pp. 261–273. https://doi.org/10.1007/s10641-004-0299-0

    Article  Google Scholar 

  48. Mužinić, R., On the shoaling behavior of sardines (Sardina pilchardus) in aquaria, ICES J. Mar. Sci., 1977, vol. 37, no. 2, pp. 147–155. https://doi.org/10.1093/icesjms/37.2.147

    Article  Google Scholar 

  49. Partridge, B.L., Internal dynamics and interrelations of fish in schools, J. Comp. Physiol., 1981, vol. 144, no. 3, pp. 313–325. https://doi.org/10.1007/BF00612563

    Article  Google Scholar 

  50. Partridge, B.L., Pitcher, T.J., Cullen, J.M., and Wilson, J., The three-dimensional structure of fish schools, Behav. Ecol. Sociobiol., 1980, vol. 6, no. 4, pp. 277–288. https://doi.org/10.1007/BF00292770

    Article  Google Scholar 

  51. Pavlov, D.S., Optomotornaya reaktsiya i osobennosti orientatsii ryb v potoke vody (Optomotor Reaction and Peculiarities of Fish Orientation in Water Flow), Moscow: Nauka, 1970.

  52. Pitcher, T.J. and Parrish, B.L., Functions of shoaling behavior in teleosts, in Behaviour of Teleost Fishes, London: Chapman and Hall, 1993.pp. 262–439.

    Book  Google Scholar 

  53. Pitcher, T.J. and Partridge, B.L., Fish school density and volume, Mar. Biol., 1979, vol. 54, no. 4, pp. 383–394. https://doi.org/10.1007/BF00395444

    Article  Google Scholar 

  54. Pitcher, T.J., Wyche, C.J., and Magurran, A.E., Evidence for position preferences in schooling mackerel, Anim. Behav., 1982, vol. 30, no. 3, pp. 932–934. https://doi.org/10.1016/S0003-3472(82)80170-X

    Article  Google Scholar 

  55. Pitcher, T.J., Magurran, A.E., and Edwards, J.I., Schooling mackerel and herring choose neighbours of similar size, Mar. Biol., 1985, vol. 86, no. 3, pp. 319–322. https://doi.org/10.1007/BF00397518

    Article  Google Scholar 

  56. Reebs, S.G., Influence of body size on leadership in shoals of golden shiners, Notemigonus crysoleucas, Behaviour, 2001, vol. 138, no. 7, pp. 797–809. https://doi.org/10.1163/156853901753172656

    Article  Google Scholar 

  57. Serebrov, L.I., Relationship between school density and size of fish, J. Ichthyol., 1976, vol. 16, no. 1, pp. 135–140.

    Google Scholar 

  58. Serebrov, L.I., Distribution of juvenile minnow Phoxinus phoxinus (L.) in mobile and immobile schools, Vopr. Ikhtiol., 1978, vol. 18, no. 3, pp. 565–568.

    Google Scholar 

  59. Serebrov, L.I., Structure and some features of group interaction of individuals in schools of capelin Mallotus villosus villosus (Müller) (Osmeridae), Ibid., 1984, vol. 24, no. 3, pp. 472-480.

    Google Scholar 

  60. Sette, O.E., Biology of the Atlantic mackerel (Scomber scombrus) of North America. Pt II. Migration and habits, Fish. Bull., 1950, vol. 51, no. 1, pp. 251–358.

    Google Scholar 

  61. Shuleikin, V.V., Fizika morya (Physics of the Sea), Moscow: Nauka, 1968.

  62. Steven, D.M., Studies in the shoaling behaviour of fish. Responses of two species to changes in illumination and to olfactory stimuli, J. Exp. Biol., 1959, vol. 36, no. 2, pp. 261–280. https://doi.org/10.1242/jeb.36.2.261

    Article  CAS  Google Scholar 

  63. Ward, A.J.W., Thomas, P., Hart, P.J.B., and Krause, J., Correlates of boldness in three-spined sticklebacks (Gasterosteus aculeatus), Behav. Ecol. Sociobiol., 2004, vol. 55, no. 6, pp. 561–568. https://doi.org/10.1007/s00265-003-0751-8

    Article  Google Scholar 

  64. Ward, A.J.W., Duff, A.J., Krause, J., and Barber, I., Shoaling behaviour of sticklebacks infected with the microsporidian parasite, Glugea anomala, Environ. Biol. Fish., 2005. vol. 72, no. 2, pp. 155–160. https://doi.org/10.1007/s10641-004-9078-1

    Article  Google Scholar 

  65. Wiwchar, L.D., Gilbert, M.J.H., Kasurak, A.V., and Tierney, K.B., Schooling improves critical swimming performance in zebrafish (Danio rerio), Can. J. Fish. Aquat. Sci., 2018. vol. 75, no. 4, pp. 653–661. https://doi.org/10.1139/cjfas-2017-0141

    Article  CAS  Google Scholar 

  66. Zaferman, M.L., On the theory of hydrophotogrammetry, Tr. Polyarn. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 1975, no. 35, pp. 30–135.

  67. Zaferman, M.L. and Serebrov, L.I., Geometric model of the location of fish in a school, Vopr. Ikhtiol., 1988, vol. 28, no. 1, pp. 166–168.

    Google Scholar 

  68. Zuyev, G.V. and Belyayev, V.V., An experimental study of the swimming of fish in groups as exemplified by the Horsemackerel [Trachurus mediterraneus ponticus Aleev], J. Ichthyol., 1970, vol. 10, no. 4, pp. 545–549.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their sincere gratitude to A.A. Kazhlaev and L.S. Alekseeva (Moscow State University), who provided great assistance in preparing the article for publication. The authors are sincerely grateful to P.I. Kirillov (Institute of Ecology and Evolution, Russian Academy of Sciences) for careful and constructive editing of the text and illustrations, which improved the quality of the article.

Funding

The article was prepared within the framework of scientific projects of the state assignment of the Moscow State University No. 121032300100-5 and the Institute of Ecology and Evolution, Russian Academy of Sciences No. 121122300056-3 in the Unified State Information System for Accounting the Results of Civil Research, Development and Technological Works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Kasumyan.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

CONFLICT OF INTEREST

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by S. Avodkova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasumyan, A.O., Pavlov, D.S. Internal Structure of a Fish School. J. Ichthyol. 63, 1251–1263 (2023). https://doi.org/10.1134/S0032945223070044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945223070044

Keywords:

Navigation