Skip to main content
Log in

Genetic Variations of Fourth Exon Region of Prolactin Gene and Its Associations with Growth Traits in European Sea Bass Dicentrarchus labrax (Moronidae)

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

European sea bass Dicentrarchus labrax (Moronidae), which has a high commercial value, is mainly produced in the Mediterranean region. Prolactin (PRL) is a member of the helix bundle protein family that is secreted in the anterior pituitary gland and has a significant role in osmoregulation and growth in teleost fish. In this study, we investigated the genetic variation of the partial sequence of 3rd, 4th introns, and 4th exon regions of the PRL gene in Dicentrarchus labrax and its association with growth traits that were reared in cage conditions. Two SNPs (g.484 A > C, g.529 T > C) and one 15 bp indel (insertion/deletion) have been found in the 3rd intron region of the PRL gene of Dicentrarchus labrax. A significant association has been identified between the total body weight and the genotypes for PRL g.529 T > C locus (р < 0.05). The heterozygote genotype of the PRL g.529 T > C locus has a significantly higher total body weight than the other genotypes in the population (p < 0.05). Association analysis indicated that this SNP in the PRL gene is correlated with growth traits and could be used for genomic selection programs in Dicentrarchus labrax breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bernichtein, S., Touraine, P., and Goffin, V., New concepts in prolactin biology, J. Endocrinol., 2010, vol. 206, pp. 1–11. https://doi.org/10.1677/JOE-10-0069

    Article  CAS  PubMed  Google Scholar 

  2. Blel, H., Panfili, J., Guinand, B., et al., Selection footprint at the first intron of the Prl gene in natural populations of the flathead mullet (Mugil cephalus, L. 1758), J. Exp. Mar. Biol. Ecol., 2010, vol. 387, no 1–2, pp. 60–67. https://doi.org/10.1016/j.jembe.2010.02.018

    Article  CAS  Google Scholar 

  3. Bole-Feysot, C., Goffin, V., Edery, M, et al., Prolactin (PRL) and its receptor: Actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice, Endocrinol. Rev., 1998, vol. 19, pp. 225–268. https://doi.org/10.1210/edrv.19.3.0334

    Article  CAS  Google Scholar 

  4. Boutet, I., Long Ky, C.L., and Bonhomme, F., A transcriptomic approach of salinity response in the euryhaline teleost, Dicentrarchus labrax, Gene, 2006, vol. 379, pp. 40–50. https://doi.org/10.1016/j.gene.2006.04.011

    Article  CAS  PubMed  Google Scholar 

  5. Boutet, I., Lorinnebel, C., De Lorgeril, J., and Guinand B., Molecular characterisation of prolactin and analysis of extrapituitary expression in the European sea bass Dicentrarchus labrax under various salinity conditions, Comp. Biochem. Physiol., Part D, Genomics Proteomics, 2007, vol. 2, pp. 74–83. https://doi.org/10.1016/j.cbd.2006.12.002

    Article  CAS  PubMed  Google Scholar 

  6. Chaoui, L., Gagnaire, P. A., Guinand, B., et al., Microsatellite length variation in candidate genes correlates with habitat in the gilthead sea bream Sparus aurata, Mol. Ecol., 2012, vol. 21, no. 22, pp. 5497–5511. https://doi.org/10.1016/j.cbd.2006.12.002

    Article  CAS  PubMed  Google Scholar 

  7. De-Santis, C. and Jerry, D.R., “Candidate growth genes in finfish–where should we be looking?”, Aquaculture, 2007, vol. 272, pp. 22–38. https://doi.org/10.1016/j.aquaculture.2007.08.036

    Article  CAS  Google Scholar 

  8. Forsyth, I.A. and Wallis, M., Growth hormone and prolactin-molecular and functional evolution, J. Mammary Gland Biol. Neoplasia, 2002, vol. 7, pp. 291–312. https://doi.org/10.1023/A:1022804817104

    Article  PubMed  Google Scholar 

  9. Freeman, M.E., Kanyicska, B., Lerant, A., and Nagy, G., Prolactin: Structure, function, and regulation of secretion, Physiol. Rev., 2000, vol. 80, pp. 1523–1631. https://doi.org/10.1023/A:1022804817104

    Article  CAS  PubMed  Google Scholar 

  10. Guinand, B., Quéré, N., Desmarais, E., et al., From the laboratory to the wild: Salinity-based genetic differentiation of the European sea bass (Dicentrarchus labrax) using gene-associated and gene-independent microsatellite markers, Mar. Biol., 2015, vol. 162, no. 3, pp. 515–538. https://doi.org/10.1007/s00227-014-2602-8

    Article  CAS  Google Scholar 

  11. Gutierrez, A.P., Yáñez, J.M., Fukui, S., et al., Genome-wide association study (GWAS) for growth rate and age at sexual maturation in Atlantic salmon (Salmo salar), PLoS One, 2015, vol. 10, Article e0119730. https://doi.org/10.1371/journal.pone.0119730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haldar, C., Progress and promises of candidate gene association studies for improvement of fish complex traits, Int. J. Fish. Aquat. Stud., 2018, vol. 6, pp. 162–165.

    Google Scholar 

  13. He, X.P., Xia, J.H., Wang, C.M., et al., Significant associations of polymorphisms in the prolactin gene with growth traits in Asian seabass (Lates calcarifer), Anim. Genet., 2012, vol. 43, pp. 233–236. https://doi.org/10.1111/j.1365-2052.2011.02230.x

    Article  CAS  PubMed  Google Scholar 

  14. Hirose, S., Kaneko, T., and Naito, N.Y., Takei molecular biology of major components of chloride cells, Comp. Biochem. Physiol., 2003, vol. 136, pp. 593–620. https://doi.org/10.1016/S1096-4959(03)00287-2

    Article  CAS  Google Scholar 

  15. Hu, X., Li, C., and Shi, L., A novel 79-bp insertion/deletion polymorphism in 3′-flanking region of IGF-I gene is associated with growth-related traits in common carp (Cyprinus carpio L.), Aquacult. Res., 2013, vol. 44, pp. 1632–1638. https://doi.org/10.1111/are.12091

    Article  CAS  Google Scholar 

  16. Imaoka, T., Matsuda, M., and Mori, T., Extrapituitary expression of the prolactin gene in the goldfish, African clawed frog and mouse, Zool. Sci., 2000, vol. 17, pp. 791–796. https://doi.org/10.2108/zsj.17.791

    Article  CAS  Google Scholar 

  17. Işik, R., Novel single nucleotide polymorphisms of Lysozyme (C-Type) gene in donkey (Equus asinus) populations in Marmara Province of Turkey, Turk. J. Agricult. Food Sci. Technol., 2020, vol. 8, pp. 495–498. https://doi.org/10.24925/turjaf.v8i2.495-498.3315

    Article  Google Scholar 

  18. Işik, R., Özdil, F., and Meral, S., Evaluation of variation on myostatin (MSTN) gene of Turkish Donkey Populations in Thrace Region of Turkey, J. Tekirdag Agricult. Fac., 2022, vol. 19, no. 2, pp. 426–434. https://doi.org/10.33462/jotaf.1015587

    Article  Google Scholar 

  19. Jackson, L.F., McCormick, S.D., Madsen, S.S., et al., Osmoregulatory effects of hypophysectomy and homologous prolactin replacement in hybrid striped bass, Comp. Biochem. Physiol., B, Biochem. Mol. Biol., 2005, vol. 140, pp. 211–218. https://doi.org/10.1016/j.cbpc.2004.10.004

    Article  CAS  PubMed  Google Scholar 

  20. Korkut, A.Y., Aysun, K.O.P., Demirtaş, N., and Cihaner, A., Balik Beslemede Gelişim Performansinin İzlenme Yöntemleri, Ege J. Fish. Aquat. Sci., 2007, vol. 24, no. 1, pp. 201–205.

    Google Scholar 

  21. Kousoulaki, K., Sæther, B. S., Albrektsen, S., and Noble, C., Review on European sea bass (Dicentrarchus labrax, Linnaeus, 1758) nutrition and feed management: A practical guide for optimizing feed formulation and farming protocols, Aquacult. Nutrition, 2015, vol. 21, no. 2, pp. 129–151. https://doi.org/10.1111/anu.12233

    Article  Google Scholar 

  22. Kuhl, H., Beck, A., Wozniak, G., et al., The European sea bass Dicentrarchus labrax genome puzzle: comparative BAC-mapping and low coverage shotgun sequencing, BMC Genom., 2010, vol. 11, no. 68, pp. 1–13. https://doi.org/10.1186/1471-2164-11-68

    Article  CAS  Google Scholar 

  23. Ma, D., Ma, A., Huang, Z., et al., Transcriptome analysis for identification of genes related to gonad differentiation, growth, immune response and marker discovery in the turbot (Scophthalmus maximus), PLoSOne, 2016, vol. 11, Article e0149414. https://doi.org/10.1371/journal.pone.0149414

    Article  CAS  Google Scholar 

  24. Magnanou, E., Klopp, C., Noirot, C., et al., Generation and characterization of the sea bass Dicentrarchus labrax brain and liver transcriptomes, Gene, 2014, vol. 544, pp. 56–66. https://doi.org/10.1016/j.gene.2014.04.032

    Article  CAS  PubMed  Google Scholar 

  25. McCormick, S.D., Endocrine control of osmoregulation in teleost fish, Am. Zool., 2001, vol. 41, pp. 781–794. https://doi.org/10.1093/icb/41.4.781

    Article  CAS  Google Scholar 

  26. Özcan Gökçek, E. and Işik R., Associations between genetic variants of the insulin-like growth factor I (IGF-I) gene and growth traits in European sea bass (Dicentrarchus labrax, L.), Fish Physiol. Biochem., 2020, vol. 46, pp. 1131–1138. https://doi.org/10.1007/s10695-020-00779-8

    Article  CAS  PubMed  Google Scholar 

  27. Özcan Gökçek, E., Işik R., Karahan, B., and Gamsiz K., Genetic variation of Insulin-like growth factor II (IGF-II) gene and its associations with growth traits in European sea bass (Dicentrarchus labrax), Turk. J. Fish. Aquat. Sci., 2020, vol. 20, pp. 54–548. https://doi.org/10.4194/1303-2712-v20_7_04

    Article  Google Scholar 

  28. Pagani, F. and Baralle, F.E., Genomic variants in exons and introns: Identifying the splicing spoilers, Nat. Rev. Genet., 2004, vol. 5, pp. 389–396. https://doi.org/10.1038/nrg1327

    Article  CAS  PubMed  Google Scholar 

  29. Pavlova, N.S., Neretina, T.V., and Smirnova, O.V., Dynamics of Prolactin axis genes in the brain of male and female three-spined stickleback Gasterosteus aculeatus (Gasterostaidae) during short-term freshwater adaptation, J. Ichthyol., 2020, vol. 60, no. 2, pp. 299–304. https://doi.org/10.1134/S0032945220020150

    Article  Google Scholar 

  30. Peñaloza, C., Hamilton, A., Guy, D. R., et al., A SNP in the 5’ flanking region of the myostatin-1b gene is associated with harvest traits in Atlantic salmon (Salmo salar), BMC Genet., 2013, vol. 14, no. 1, pp. 1–7. https://doi.org/10.1186/1471-2156-14-112

    Article  CAS  Google Scholar 

  31. Piferrer, F., Blazquez, M., Navarro, L., and Gonzalez, A., Genetic, endocrine, and environmental components of sex determination and differentiation in the European sea bass (Dicentrarchus labrax L.), Gen. Comp. Endocrinol., 2005, vol. 142, pp. 102–110. https://doi.org/10.1016/j.ygcen.2005.02.011

    Article  CAS  PubMed  Google Scholar 

  32. Sakamoto, T. and McCormick S.D., Prolactin and growth hormone in fish osmoregulation, Ibid., 2006, vol. 147, pp. 24–30.

    CAS  Google Scholar 

  33. Sakamoto, T., Amano, M., Hyodo, S., et al., Expression of prolactin-releasing peptide and prolactin in the euryhaline mudskippers (Periophthalmus modestus): Prolactin-releasing peptide as a primary regulator of prolactin, J. Mol. Endocrinol., 2005a, vol. 34, pp. 825–834.

    Article  CAS  PubMed  Google Scholar 

  34. Sakamoto, T., Oda, A., Narita, K., et al., Prolactin: Wshy tales of its primary regulator and function, Ann. NY Acad. Sci., 2005b, vol. 1040, pp. 184–188.

    Article  CAS  PubMed  Google Scholar 

  35. Sánchez-Ramos, I., Cross, I., Mácha, J., et al., Assessment of tools for marker-assisted selection in a marine commercial species: Significant association between MSTN-1 gene polymorphism and growth traits, Sci. World J., 2012, Article 369802. https://doi.org/10.1100/2012/369802

  36. Sangiao-Alvarellos, S., Arjona, F. J., Míguez, J. M., et al., Growth hormone and prolactin actions on osmoregulation and energy metabolism of gilthead sea bream (Sparus auratus), Comp. Biochem. Physiol., Part A, Mol. Integr. Physiol., 2006, vol. 144, pp. 491–500. https://doi.org/10.1016/j.cbpa.2006.04.015

    Article  CAS  Google Scholar 

  37. Santos, C.R., Brinca, L., Ingleton, P.M., and Power, D.M., Cloning, expression, and tissue localisation of prolactin in adult sea bream (Sparus aurata), Gen. Comp. Endocrinol., 1999, vol. 114, pp. 57–66. https://doi.org/10.1006/gcen.1998.7228

    Article  CAS  PubMed  Google Scholar 

  38. Streelman, J. T., and Kocher, T. D., Microsatellite variation associated with prolactin expression and growth of salt-challenged tilapia, Physiol. Genomics, 2002, vol. 9, no. 1, pp. 1–4. https://doi.org/10.1152/physiolgenomics.00105.2001

    Article  CAS  PubMed  Google Scholar 

  39. Sun, C.F., Sun, H.L., Dong, J.J., et al., Correlation analysis of mandarin fish (Siniperca chuatsi) growth hormone gene polymorphisms and growth traits, J. Genet., 2019, vol. 98, no. 2, Article 58. https://doi.org/10.1007/s12041-019-1100-7

    Article  PubMed  Google Scholar 

  40. Tine, M., Kuhl, H., Gagnaire, P. A., et al., European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation, Nat. Comm., 2014, vol. 5, no. 1, Article 5770. https://doi.org/10.1038/ncomms6770|

    Article  CAS  Google Scholar 

  41. Varsamos, S., Xuereb, B., Commes, T., et al., Pituitary hormone mRNA expression in European sea bass Dicentrarchus labrax in seawater and following acclimation to fresh water, J. Endocrinol., 2006, vol. 191, pp. 473–480. https://doi.org/10.1677/joe.1.06847

    Article  CAS  PubMed  Google Scholar 

  42. Velan, A., Hulata, G., Ron, M., et al., Association between polymorphism in the Prolactin I promoter and growth of tilapia in saline-water, Aquacult. Rep., 2015, vol. 1, pp. 5–9. https://doi.org/10.1016/j.aqrep.2015.03.001

    Article  Google Scholar 

  43. Wootton, R.J., Behavioural ecology of teleost fishes, Rev. Fish. Biol. Fish, 1998, vol. 8, pp. 493–500. https://doi.org/10.1023/A:1008872606908

    Article  Google Scholar 

  44. Zhang, S., Zhong, L., Qin, Q., et al., Three SNPs polymorphism of growth hormone-releasing hormone gene (GHRH) and association analysis with growth traits in channel catfish, Acta Microbiol. Sin., 2016, vol. 40, pp. 886–893.

    Google Scholar 

  45. Zhang, S., Li, X., Chen, X., et al., Significant associations between prolactin gene polymorphisms and growth traits in the channel catfish (Ictalurus punctatus Rafinesque, 1818) core breeding population, Meta Gene, 2019, vol. 19, pp. 32–36. https://doi.org/10.1016/j.mgene.2018.10.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Işık.

Ethics declarations

Conflicts of interest. The authors declare that there are no conflicts of interest to disclose.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özcan-Gökçek, E., Işık, R. Genetic Variations of Fourth Exon Region of Prolactin Gene and Its Associations with Growth Traits in European Sea Bass Dicentrarchus labrax (Moronidae). J. Ichthyol. 63, 572–578 (2023). https://doi.org/10.1134/S0032945223030128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945223030128

Keywords:

Navigation