Skip to main content
Log in

Zoogeographic Analysis of the Features of Temperature Preferences of Fish of the European Part of Russia

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

Analyzes of temperature preferences of fish and cyclostomes 54 species, inhabiting fresh water bodies of the European part of Russia are presented. It is shown that the main temperature criteria of the fundamental ecological niche (optimum, limits, and spawning temperatures) cannot be used as a clear sign of the species attribution to a particular faunistic complex. Nevertheless, these criteria are, apparently, a certain reflection of the climatic conditions in time of the species origin and development. Among the studied fish and cyclostomes, two separate groups of “northern” cold-water and “southern” warm-water species are identified. Their presence results from the historical features of the ichthyofauna formation in the region. The outlined in recent decades climatic trend towards an increase in water temperature probably favors the spread of the southern group representatives to the north, which can lead to further restructuring of competitive relations in fish populations and cause changes in the boundaries of their ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Aivazyan, S.A., Bukhshtaber, V.M., Enyukov, I.S., and Meshalkin, L.D., Prikladnaya statistika. Klassifikatsiya i snizhenie razmernosti (Applied Statistics. Classification and Dimensionality Reduction), Moscow: Finansy i Statistika, 1989.

  2. Angilletta, M.J., Niewiarowski, P.H., and Navas, C.A., The evolution of thermal physiology in ectotherms, J. Therm. Biol., 2002, vol. 27, no. 4, pp. 249–268. https://doi.org/10.1016/S0306-4565(01)00094-8

    Article  Google Scholar 

  3. Araújo, M.B., Ferri-Yáñez, F., Bozinovic, F., et al., Heat freezes niche evolution, Ecol. Lett., 2013, vol. 16, no. 9, pp. 1206–1219. https://doi.org/10.1111/ele.12155

    Article  PubMed  Google Scholar 

  4. Armstrong, J.B., Schindler, D.E., Ruff, C.P., et al., Diel horizontal migration in streams, Ecology, 2013, vol. 94, no. 9, pp. 2066–2075. https://doi.org/10.1890/12-1200.1

    Article  PubMed  Google Scholar 

  5. Beitinger, T.L., Bennett, W.A., and McCauley, R.W., Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature, Environ. Biol. Fish., 2000, vol. 58, no. 3, pp. 237–275. https://doi.org/10.1023/A:1007676325825

    Article  Google Scholar 

  6. Bennett, S., Duarte, C.M., Marba, N., and Wernberg, T., Integrating within-species variation in thermal physiology into climate change ecology, Philos. Trans. R. Soc. London B., 2019, vol. 374, no. 1778, Article 20180550. https://doi.org/10.1098/rstb.2018.0550

  7. Bicego, K.C., Barros, R.C.H., and Branco, L.G.S., Physiology of temperature regulation, Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2007, vol. 147, no. 3, pp. 616–639. https://doi.org/10.1016/j.cbpa.2006.06.032

    Article  CAS  PubMed  Google Scholar 

  8. Brett, J.R., Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerka), Am. Zool., 1971, vol. 11, no. 1, pp. 99–113. https://doi.org/10.1093/icb/11.1.99

    Article  Google Scholar 

  9. Brown, J.H. and Feldmeth, C.R., Evolution in constant and fluctuating environments, Evolution, 1971, vol. 25, no. 2, pp. 390–398. https://doi.org/10.1111/j.1558-5646.1971.tb01893.x

    Article  PubMed  Google Scholar 

  10. Chen, Z., Anttila, K., Wu, J., et al., Optimum and maximum temperatures of sockeye salmon (Oncorhynchus nerka) populations hatched at different temperatures, Can. J. Zool., 2013, vol. 91, no. 5, pp. 265–274. https://doi.org/10.1139/cjz-2012-0300

    Article  Google Scholar 

  11. Clark, C.W. and Levy, D.A., Diel vertical migrations by juvenile sockeye salmon and the antipredation window, Am. Natur., 1988, vol. 131, no. 2, pp. 271–290.

    Article  Google Scholar 

  12. Clark, D.S. and Green, J.M., Seasonal variation in temperature preference of juvenile Atlantic cod (Gadus morhua), with evidence supporting an energetic basis for their diel vertical migration, Can. J. Zool., 1991, vol. 69, no. 5, pp. 1302–1307. https://doi.org/10.1139/z91-183

    Article  Google Scholar 

  13. Clough, S. and Ladle, M., Diel migration and site fidelity in a stream-dwelling cyprinid, Leuciscus leuciscus, J. Fish. Biol., 1997, vol. 50, no. 5, pp. 1117–1119. https://doi.org/10.1111/j.1095-8649.1997.tb01635.x

    Article  Google Scholar 

  14. Cooper, B.S., Williams, B.H., and Angilletta, M.J., Unifying indices of heat tolerance in ectotherms, J. Therm. Biol., 2008, vol. 33, no. 6, pp. 320–323. https://doi.org/10.1016/j.jtherbio.2008.04.001

    Article  Google Scholar 

  15. Dahlke, F.T., Wohlrab, S., Butzin, M., and Portner, H.O., Thermal bottlenecks in the life cycle define climate vulnerability of fish, Science, 2020, vol. 369, no. 6499, pp. 65–70. https://doi.org/10.1126/science.aaz3658

    Article  CAS  PubMed  Google Scholar 

  16. Elliott, J.M. and Elliott, J.A., The critical thermal limits for the bullhead, Cottus gobio, from three populations in north-west England, Freshw. Biol., 1995, vol. 33, no. 3, pp. 411–418. https://doi.org/10.1111/j.1365-2427.1995.tb00403.x

    Article  Google Scholar 

  17. Elliott, J.M. and Klemetsen, A., The upper critical thermal limits for alevins of Arctic charr from a Norwegian lake north of the Arctic circle, J. Fish. Biol., 2002, vol. 60, no. 5, pp. 1338–1341. https://doi.org/10.1006/jfbi.2002.1934

    Article  Google Scholar 

  18. Fangue, N.A., Hofmeister, M., and Schulte, P.M., Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus, J. Exp. Biol., 2006, vol. 209, no. 15, pp. 2859–2872. https://doi.org/10.1242/jeb.02260

    Article  CAS  PubMed  Google Scholar 

  19. Fields, R., Lowe, S.S., Kaminski, C., et al., Critical and chronic thermal maxima of northern and Florida largemouth bass and their reciprocal F1 and F2 hybrids, Trans. Am. Fish. Soc., 1987, vol. 116, no. 6, pp. 856–863. https://doi.org/10.1577/1548-8659(1987)116<856:CACTMO>2.0.CO;2

    Article  Google Scholar 

  20. Fry, F.E.J., Effects of the environment on animal activity, Univ. Toronto Stud. Biol. Ser., 1947, no. 55 (Publ. Ontario Fish. Res. Lab. no. 68), pp. 1–62.

  21. Garner, P., Clough, S., Griffiths, S.W., et al., Use of shallow marginal habitat by Phoxinus phoxinus: A trade-off between temperature and food?, J. Fish. Biol., 1998, vol. 52, no. 3, pp. 600–609. https://doi.org/10.1111/j.1095-8649.1998.tb02020.x

    Article  Google Scholar 

  22. Gerasimov, Yu.V., Smirnov, A.K., and Kodukhova, Yu.V., Assessment of possible causes of changes in abundance and sexual structure in populations of Prussian carp (Carassius auratus gibelio Bloch., 1783), Inland Water Biol., 2018, vol. 11, no. 1, pp. 72–80. https://doi.org/10.1134/S199508291704006X

    Article  Google Scholar 

  23. Golovanov, V.K., Temperaturnye kriterii zhiznedeyatel’nosti presnovodnykh ryb (Temperature Criteria for the Vital Activity of Freshwater Fish), Moscow: Poligraf-Plyus, 2013.

  24. Golovanov, V.K., Kapshai, D.S., Gerasimov, Yu.V., et al., Thermopreference and thermostabilty of the Amur sleeper juveniles Perccottus glenii in autumn, J. Ichthyol., 2013, vol. 53, no. 3, pp. 240–244. https://doi.org/10.1134/S0032945213020033

    Article  Google Scholar 

  25. Jobling, M., Temperature tolerance and the final preferendum—rapid methods for the assessment of optimum growth temperatures, J. Fish. Biol., 1981, vol. 19, no. 4, pp. 439–455. https://doi.org/10.1111/j.1095-8649.1981.tb05847.x

    Article  Google Scholar 

  26. Karabanov, D.P., Geneticheskie adaptatsii chernomorsko-kaspiiskoi tyul’ki Clupeonella cultriventris (Nordmann, 1840) (Actinopterygii: Clupeidae) (Genetic Adaptations of the Black Sea-Caspian Kilka Clupeonella cultriventris (Nordmann, 1840) (Actinopterygii: Clupeidae)), Voronezh: Nauchn. Kniga, 2013.

  27. Karabanov, D.P., Pavlov, D.D., Nikitin, E.V., et al., Analysis of the species composition, problems of identification and ways of dispersal of alien fish species in the Volga River basin, Vestn. Astrakhan. Gos. Tekhn. Univ. Ser. Rybn. Khoz-vo, 2020, no. 3, pp. 7–17. https://doi.org/10.24143/2073-5529-2020-3-7-17

  28. Karabanov, D.P., Bekker, E.I., Pavlov, D.D., et al., New sets of primers for DNA identification of non-indigenous fish species in the Volga-Kama basin (European Russia), Water, 2022, vol. 14, no. 3, Article 437. https://doi.org/10.3390/w14030437

    Article  CAS  Google Scholar 

  29. Kaufman, B.Z., Possible evolutionary significance of the thermopreferendum reaction in poikilothermic animals, Zh. Obshch. Biol., 1985, vol. 46, no. 4, pp. 509-515.

    Google Scholar 

  30. Kiyashko, V.I., Karabanov, D.P., Yakovlev, V.N., et al., Formation and development of the Black Sea-Caspian kilka Clupeonella cultriventris (Clupeidae) in the Rybinsk reservoir, J. Ichthyol., 2012, vol. 52, no. 8, pp. 537–546.

    Article  Google Scholar 

  31. Konecki, J.T., Woody, C.A., and Quinn, T.P., Temperature preference in two populations of juvenile coho salmon, Oncorhynchus kisutch, Environ. Biol. Fish., 1995, vol. 44, no. 4, pp. 417–421. https://doi.org/10.1007/BF00008256

    Article  Google Scholar 

  32. Lyytikäinen, T., Koskela, J., and Rissanen, I., Thermal resistance and upper lethal temperatures of underyearling Lake Inari Arctic charr, J. Fish. Biol., 1997, vol. 51, no. 3, pp. 515–525. https://doi.org/10.1111/j.1095-8649.1997.tb01509.x

    Article  Google Scholar 

  33. Magnuson, J.J., Crowder, L.B., and Medvick, P.A., Temperature as an ecological resource, Am. Zool., 1979, vol. 19, no. 1, pp. 331–343. https://doi.org/10.1093/icb/19.1.331

    Article  Google Scholar 

  34. McKenzie, D.J., Zhang, Y., Eliason, E.J., et al., Intraspecific variation in tolerance of warming in fishes, J. Fish. Biol., 2020, vol. 98, no. 6, pp. 1536–1555. https://doi.org/10.1111/jfb.14620

    Article  PubMed  Google Scholar 

  35. Mehner, T., Diel vertical migration of freshwater fishes – proximate triggers, ultimate causes and research perspectives, Freshw. Biol., 2012, vol. 57, no. 7, pp. 1342–1359. https://doi.org/10.1111/j.1365-2427.2012.02811.x

    Article  Google Scholar 

  36. Mulhollem, J.J., Suski, C.D., and Wahl, D.H., Response of largemouth bass (Micropterus salmoides) from different thermal environments to increased water temperature, Fish Physiol. Biochem., 2015, vol. 41, no. 4, pp. 833–842. https://doi.org/10.1007/s10695-015-0050-0

    Article  CAS  PubMed  Google Scholar 

  37. Nikol’skii, G.V., Ryby basseina Amura. Itogi Amurskoi ikhtiologicheskoi ekspeditsii 1945–1949 gg. (Fishes of the Amur Basin. Results of the Amur Ichthyological Expedition 1945–1949), Moscow: Akad. Nauk SSSR, 1956.

  38. Nikol’skii, G.V., Struktura vida i zakonomernosti izmenchivosti ryb (Structure of the Species and Patterns of Variability of Fishes), Moscow: Pishch. Prom-st, 1980.

  39. Ozernyuk, N.D., Temperaturnye adaptatsii (Temperature Adaptations), Moscow: Mosk. Gos. Univ., 2000.

  40. Pörtner, H.O., Climate variations and the physiological basis of temperature dependent biogeography, Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2002, vol. 132, no. 4, pp. 739–761. https://doi.org/10.1016/S1095-6433(02)00045-4

    Article  PubMed  Google Scholar 

  41. Pörtner, H.O. and Knust, R., Climate change affects marine fishes through the oxygen limitation of thermal tolerance, Science, 2007, vol. 315, no. 5808, pp. 95–97. https://doi.org/10.1126/science.1135471

    Article  CAS  PubMed  Google Scholar 

  42. Reshetnikov, Yu.S., Ideas of G.V. Nikolsky about faunistic complexes and their modern development, in Sovremennye problemy ikhtiologii (Modern Issues of Ichthyology), Moscow: Nauka, 1981, pp. 75–95.

  43. Ricklefs, R.E., Evolutionary diversification and the origin of the diversity–environment relationship, Ecology, 2006, vol. 87, no. sp7, pp. S3–S13. https://doi.org/10.1890/0012-9658(2006)87[3:EDATOO]-2.0.CO;2

    Article  PubMed  Google Scholar 

  44. Ryby Mongol’skoi Narodnoi Respubliki (Fishes of the Mongolian People’s Republic), Moscow: Nauka, 1983.

  45. Ryby Rybinskogo vodokhranilishcha: populyatsionnaya dinamika i ekologiya (Fishes of the Rybinsk Reservoir: Population Dynamics and Ecology), Yaroslavl: Filigran’, 2015.

  46. Ryby v zapovednikakh Rossii (Fishes in the Reserves of Russia), Moscow: KMK, 2010, vol. 1.

  47. Sakharova, E.G., Phytoplankton of Lake Pleshcheyevo in 2014–2016, Tr. Inst. Biol. Vnutr. Vod Ross. Akad. Nauk, 2019, vol. 89, no. 86, pp. 23–33. https://doi.org/10.24411/0320-3557-2019-10009

    Article  Google Scholar 

  48. Slonim, A.D., Ekologicheskaya fiziologiya zhivotnykh (Ecological Physiology of Animals), Moscow: Vyssh. Shk., 1971.

  49. Smirnov, A.K. and Smirnova, E.S., Behavior of juvenile perch Perca fluviatilis (Percidae) in a heterothermal environment with different food supply, Zool. Zh., 2019, vol. 98, no. 2, pp. 182–192. https://doi.org/10.1134/S0044513419020168

    Article  Google Scholar 

  50. Sokal, R.R. and Rohlf, F.J., Biometry, New York: W.H. Freeman, 1995.

    Google Scholar 

  51. Sprent, P. and Smeeton, N.C., Applied Nonparametric Statistical Methods, Boca Raton: Chapman and Hall; CRC, 2007. https://doi.org/10.1201/b15842

  52. Sunday, J.M., Bates, A.E., and Dulvy, N.K., Thermal tolerance and the global redistribution of animals, Nat. Clim. Change, 2012, vol. 2, no. 9, pp. 686–690. https://doi.org/10.1038/nclimate1539

    Article  Google Scholar 

  53. Vasilenko, A.N., Modern ideas about the thermal regime of rivers and its transformations in a changing climate, Mater. Mezhdunar. nauch.-prakt. konf. “Global’nye klimaticheskie izmeneniya: regional’nye effekty, modeli, prognozy” (Proc. Int. Sci.-Pract. Conf. “Global Climate Change: Regional Effects, Models, Forecasts”), Voronezh: Tsifrovaya Poligrafiya, 2019, vol. 1, pp. 359–363.

  54. Yakovlev, V.N., The history of the formation of faunal complexes of freshwater fishes, Vopr. Ikhtiol., 1964, vol. 4, no. 1 (30), pp. 10–22.

  55. Zakhartsev, M.V., Wachter, B., Sartoris, F.J., et al., Thermal physiology of the common eelpout (Zoarces viviparus), J. Comp. Physiol. B., 2003, vol. 173, no. 5, pp. 365–378. https://doi.org/10.1007/s00360-003-0342-z

    Article  CAS  PubMed  Google Scholar 

  56. Zakonnova, A.V. and Litvinov, A.S., Long-term changes in the hydroclimatic regime of the Rybinsk Reservoir, Tr. Inst. Biol. Vnutr. Vod Ross. Akad. Nauk, 2016, vol. 78, no. 75, pp. 16–22. https://doi.org/10.24411/0320-3557-2016-10016

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is deeply grateful to E.I. Izvekov and V.G. Tereshchenko (Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences) for valuable advice and comments during the preparation of the manuscript.

Funding

The work was carried out within the framework of the State Order of the Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, topic No. 121051100104-6 “Biodiversity, structure, and functioning of freshwater fish in continental water bodies.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Smirnov.

Ethics declarations

Conflict of interests. The author declares that he has no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by T. Kuznetsova

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, A.K. Zoogeographic Analysis of the Features of Temperature Preferences of Fish of the European Part of Russia. J. Ichthyol. 63, 242–252 (2023). https://doi.org/10.1134/S0032945223020182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945223020182

Keywords:

Navigation