Skip to main content
Log in

Hematological and Genotoxic Indicators of the Freshwater Beam Abramis brama and Prussian Carp Carassius gibelio (Cyprinidae) in the Volga Delta

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

The occurrence of erythrocytes with micronuclei and DNA damage was detected by the comet assay in freshwater bream, Abramis brama, of age 3–4, and prussian carp, Carassius gibelio, of age 4–5 from Volga delta in September 2021. The average frequency of erythrocytes with micronuclei in the studied fish es was within the normal range for cells formed during spontaneous mutagenesis (0.5–1.0‰). Further, 25% freshwater bream and 26.6% Prussian carp exceeded this limit. The genetic damage index (GDI), which reflects primary DNA damage, was 0.21 ± 0.03 and 0.26 ± 0.02 in freshwater bream and Prussian carp, respectively. Further, it correlated (r = 0.71, p < 0.05) in Prussian carp with the occurrence of erythrocytes with micronuclei. Hematological and biochemical parameters of the mentioned species were within typical limits for fishes residing in water bodies with a weak anthropogenic load. The results allow considering the existing conditions of the freshwater bream and Prussian carp in the Volga delta as quite favorable in relation to the genotoxic situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Barabanov, V.V., Assessment of the state of the freshwater ichthyofauna of the Volga-Akhtuba floodplain at the present stage (in 2018–2019), Vestn. Astrakhan. Gos. Tekhn. Univ. Ser. Rybn. Khoz-vo, 2020, no. 2, pp. 52–58. https://doi.org/10.24143/2073-5529-2020-2-52-58

  2. Basu, A., DNA damage, mutagenesis and cancer, Int. J. Mol. Sci., 2018, vol. 19, no. 4, Article 970. https://doi.org/10.3390/ijms19040970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bombail, V., Aw, D., Gordon, E., and Batty, J., Application of the comet and micronucleus assays to butterfish (Pholis gunnellus) erythrocytes from the firth of forth, Scotland, Chemosphere, 2001, vol. 44, no. 3, pp. 383–392. https://doi.org/10.1016/s0045-6535(00)00300-3

    Article  CAS  PubMed  Google Scholar 

  4. Brekhovskikh, V.F., Volkova, Z.V., and Perekal’skii, V.M., The current state of the quality of water and bottom sediments in the Lower Volga: modeling and assessing the consequences of extreme situations, Mater. Vseros. nauch. konf. “Vodnye problemy krupnykh rechnykh basseinov i puti ikh resheniya” (Proc. All-Russ. Sci. Conf. “Water Problems of Large River Basins and Ways to Solve Them”), Barnaul: Inst. Vodn. Ekol. Probl. Sib. Otdel. Ross. Akad. Nauk, 2009, pp. 242–251.

  5. Çavaş, T. and Serpil, K., Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (Carassius auratus) exposed to a glyphosate formulation using the micronucleus test and the comet assay, Mutagenesis, 2007, vol. 22, no. 4, pp. 263–268. https://doi.org/10.1093/mutage/gem012

    Article  CAS  PubMed  Google Scholar 

  6. Chakarov, S., Petkova, R., Russev, G.Ch., and Zhelev, N., DNA damage and mutation. Types of DNA damage, Biodiscovery, 2014, vol. 11, Article e8957. https://doi.org/10.7750/BioDiscovery.2014.11.1

    Article  Google Scholar 

  7. Collins, A.R., Ma, A.G., and Duthie, S.J., The kinetics of repair of oxidative DNA damage (strand breaks and oxidised pyrimidines) in human cells, Mutat. Res. DNA Repair, 1995, vol. 336, no. 1, pp. 69–77. https://doi.org/10.1016/0921-8777(94)00043-6

    Article  CAS  PubMed  Google Scholar 

  8. Ermilova, L.S., Biology and fishing of goldfish (Carassius auratus Linnaeus, 1758) in the Volga-Caspian and North-Caspian fishery sub-areas (Astrakhan oblast), Ryb. Khoz-vo, 2018, no. 4, pp. 64–66.

  9. German, A.V., Zakonnov, V.V., and Mamontov, A.A., Organochlorine compounds in bottom sediments, benthos, and fish in the Volga pool of the Rybinsk Reservoir, Water Resour., 2010, vol. 37, no. 1, pp. 84–88.

    Article  CAS  Google Scholar 

  10. Gornall, A.G., Bardawill, C.J., and David, M.M., Determination of serum proteins by means of the biuret reaction, J. Biol. Chem., 1949, vol. 177, no. 2, pp. 751–766. https://doi.org/10.1016/S0021-9258(18)57021-6

    Article  CAS  PubMed  Google Scholar 

  11. Hoofman, R.N. and Raat, W.K., Induction of nuclear anomalies (micronuclei) in the peripheral blood erythrocytes of the eastern mud minnow Umbra pigmaea by ethyl methanesulphonate, Mutat. Res. Lett., 1982, vol. 104, nos. 1–3, pp. 147–152. https://doi.org/10.1016/0165-7992(82)90136-1

    Article  Google Scholar 

  12. Hussain, B., Sultana, T., Sultana, S., et al., Comet and micronucleus assay in fish erythrocytes as in situ biomarker of freshwater pollution, Saudi J. Biol. Sci., 2018, vol. 25, no. 2, pp. 393–398. https://doi.org/10.1016/j.sjbs.2017.11.048

    Article  CAS  PubMed  Google Scholar 

  13. Il’inskikh, N.N., Ksents, A.S., Il’inskikh, E.N., et al., Mikroyadernyi analiz v otsenke tsitogeneticheskoi nestabil’nosti (Micronucleus Analysis in the Assessment of Cytogenetic Instability), Tomsk: Tomsk. Gos. Ped. Univ., 2011. Izrael’, Yu.A., Problemy antropogennoi ekologii. Nauchnye aspekty ekologicheskikh problem Rossii (Problems of Anthropogenic Ecology. Scientific Aspects of Environmental Problems in Russia), Moscow: Nauka, vol. 1, 2009.

  14. Jha, A.N., Ecotoxicological application and significance of the comet assay, Mutagenesis, 2008, vol. 23, no. 3, pp. 207–221. https://doi.org/10.1093/mutage/gen014

    Article  CAS  PubMed  Google Scholar 

  15. John, P.J., Alteration of certain blood parameters of freshwater teleost Mystus vittatus after chronic exposure to Metasystox and Sevin, Fish Physiol. Biochem., 2007, vol. 33, no. 1, pp. 15–20. https://doi.org/10.1007/s10695-006-9112-7

    Article  CAS  Google Scholar 

  16. Kamshilova, T.B., Mikryakov, V.R., and Mikryakov, D.V., The effect of a cortisol analogue and transport stress on the frequency of occurrence of micronuclei in erythrocytes of the peripheral blood of sterlet Acipenser ruthenus L., Inland Water Biol., 2013, vol. 6, no. 2, pp. 169–170.

    Article  Google Scholar 

  17. Karygina, N.V., Popova, E.S., L’vova, O.A., et al., On oil and pesticide pollution of the lower reaches of the Volga and the northern part of the Caspian Sea, Mater. Mezhdunar. nauch.-prakt. konf. “Ekologiya i prirodopol’zovanie” (Proc. Int. Sci.-Pract. Conf. “Ecology and Nature Management”), Magas: KEP, 2020, pp. 250–257.

  18. Kostić, J., Kolarević, S., Kračun-Kolarević, M., et al., Genotoxicity assessment of the Danube River using tissues of freshwater bream (Abramis brama), Environ. Sci. Pollut. Res., 2016, vol. 23, no. 20, pp. 20783–20795. https://doi.org/10.1007/s11356-016-7213-0

    Article  CAS  Google Scholar 

  19. Kravchenko, E.V., Comparative characteristics of adult bream feeding in the western and eastern parts of the Northern Caspian, Rybn. Khoz-vo, 2012a, no. 4, pp. 45–46.

  20. Kravchenko, E.V., Feeding characteristics of bream (Abramis brama) and crucian carp (Cyprinus carpio) in different areas of the Volga delta, Rybokhozyaistvennye issledovaniya v nizov’yakh reki Volgi i Kaspiiskom more (Fishery Research in the Lower Reaches of the Volga River and the Caspian Sea), Astrakhan: Kasp. Nauchno-Issled. Inst. Rybn. Khoz., 2012b, pp. 107–113.

    Google Scholar 

  21. Krysanov, E.Yu., Ordzhonikidze, K.G., and Simanovskii, S.A., Cytogenetic indicators in estimation of environmental state, Russ. J. Dev. Biol., 2018, vol. 49, no. 1, pp. 36–41. https://doi.org/10.1134/S1062360418010034

    Article  Google Scholar 

  22. Kuramshina, N.G., Nurtdinova, E.E., Matveeva, A.Yu., Ecological and physiological state of the ichthyofauna of small rivers of the Southern Urals, Vestn. Omsk. Gos. Agrar. Univ., 2015, vol. 19, no. 3, pp. 20–24.

  23. Kurchenko, V. and Sharamok, T., Hematological indices of the Prussian carp (Carassius gibelio (Bloch, 1782)) from the Zaporizhian (Dnipro) reservoir, Turk. J. Fish. Aquat. Sci., 2020, vol. 20, no. 11, pp. 807–812. https://doi.org/10.4194/1303-2712-v20_11_04

    Article  Google Scholar 

  24. Lecklin, T. and Nikinmaa, M., Erythropoiesis in Arctic charr is not stimulated by anaemia, J. Fish. Biol., 1998, vol. 53, no. 6, pp. 1169–1177. https://doi.org/10.1111/j.1095-8649.1998.tb00240.x

    Article  Google Scholar 

  25. Levashina, N.V. and Ivanov, V.P., Fertility of bream (Abramis brama Linnaeus, 1758) in the Volga delta, Vestn. Astrakhan. Gos. Tekhn. Univ. Ser. Rybn. Khoz-vo, 2018, no. 2, pp. 49–61. https://doi.org/10.24143/2073-5529-2018-2-49-61

  26. Mashkova, K.A. and Sharamok, T.S., Active cytometric and biochemical indicators of the blood of the crucian carp (Carassius gibelio Bloch, 1782) of the Samara River, Dnipropetrovsk oblast, Ribogospod. Nauka Ukr., 2020, vol. 53, no. 3, pp. 109–124. https://doi.org/10.15407/fsu2020.03.109

    Article  Google Scholar 

  27. Guidelines for the hematological examination of fish, in Sbornik instruktsii po bor’be s boleznyami ryb (Collection of Instructions for the Fight against Fish Diseases), Moscov: Otd. Market. AMB-agro, 1999, pt. 2, pp. 69-97.

  28. Mikryakov, D.V., Revyakin, A.O., Pronina, G.I., et al., Biochemical parameters of blood serum of rubella-resistant carp at the end of the feeding period, Tr. Inst. Biol. Vnutr. Vod Ross. Akad. Nauk, 2020, vol. 95, no. 92, pp. 113–119. https://doi.org/10.47021/0320-3557-2021-113-119

    Article  Google Scholar 

  29. Nemova, N.N. and Vysotskaya, R.U., Biokhimicheskaya indikatsiya ryb (Biochemical Indication of Fish), Moscow: Nauka, 2004.

  30. Obiakor, M.O., Tighe, M., Pereg, L., et al., A pilot in vivo evaluation of Sb(III) and Sb(V) genotoxicity using comet assay and micronucleus test on the freshwater fish, silver perch Bidyanus bidyanus (Mitchell, 1838), Environ. Adv., 2021, vol. 5, Article 100109. https://doi.org/10.1016/j.envadv.2021.100109

    Article  CAS  Google Scholar 

  31. Oganesyan, G.G., Simonyan, A.E., Gabrielyan, B.K., et al., Assessment of DNA damage in fish erythrocytes from different water bodies of Armenia using the DNA comet method, Biol. Zh. Armenii, 2012, vol. 64, no. 4, pp. 64–70.

    Google Scholar 

  32. Olive, P. and Banáth, J., The comet assay: A method to measure DNA damage in individual cells, Nat. Protoc., 2006, vol. 1, no. 1, pp. 23–29. https://doi.org/10.1038/nprot.2006.5

    Article  CAS  PubMed  Google Scholar 

  33. Ordzhonikidze, K.G., Demidova, T.B., and Krysanov, E.Yu., Evaluation of genetic homeostasis in animals at different stages of ontogenesis in the environment, Russ. J. Dev. Biol., 2014, vol. 45, no. 3, pp. 134–142. https://doi.org/10.1134/S1062360414030035

    Article  Google Scholar 

  34. Pankhurst, N.W., The endocrinology of stress in fish: An environmental perspective, Gen. Comp. Endocrinol., 2011, vol. 170, no. 2, pp. 265–275. https://doi.org /https://doi.org/10.1016/j.ygcen.2010.07.017

    Article  CAS  PubMed  Google Scholar 

  35. Pawar, D.H., River water pollution, an environmental crisis a case study of Panchaganga River of Kolhapur city, Int. J. Ecol. Dev. Sum., 2012, vol. 9, no. 1, pp. 131–133.

    Google Scholar 

  36. Petrechenkova, V.G. and Radovanova, I.G., Pollution of Volga mouth area, Water Resour., 2020, vol. 47, no. 2, pp. 294–303. https://doi.org/10.1134/S0097807820020128

    Article  CAS  Google Scholar 

  37. Plisetskaya, E.M., Gormonal’naya regulyatsiya uglevodnogo obmena u nizshikh pozvonochnykh (Hormonal Regulation of Carbohydrate Metabolism in Lower Vertebrates), Leningrad: Nauka, 1975.

  38. Pronina, G.I. and Koryagina, N.Yu., Reference values of physiological and immunological parameters of hydrobionts of different species, Vestn. Astrakhan. Gos. Tekhn. Univ. Ser. Rybn. Khoz-vo, 2015, no. 4, pp. 103–108.

  39. Rahmati, F., Falahatkar, B., and Khara, H., Effects of various feeding and starvation strategies on growth, hematological and biochemical parameters, and body composition of Caspian brown trout (Salmo caspius Kessler 1877) parr, Iran. J. Fish. Sci., 2019, vol. 18, no. 3, pp. 418–427. https://doi.org/10.22092/ijfs.2019.118343

    Article  Google Scholar 

  40. Rydberg, B. and Johanson, K.J., Estimation of DNA strand breaks in single mammalian cells, in DNA Repair Mechanisms, New York: Acad. Press, 1978, pp. 465–468. https://doi.org/10.1016/B978-0-12-322650-1.50090-4

  41. Schmidt, W., The micronucleus test, Mutat. Res. Environ. Mutagen. Relat. Subj., 1975, vol. 31, no. 1, pp. 9–15. https://doi.org/10.1016/0165-1161(75)90058-8

    Article  Google Scholar 

  42. Šimková, A., Vojtek, L., Halačka, K., et al., The effect of hybridization on fish physiology, immunity and blood biochemistry: A case study in hybridizing Cyprinus carpio and Carassius gibelio (Cyprinidae), Aquaculture, 2015, vol. 435, pp. 381–389. https://doi.org/10.1016/j.aquaculture.2014.10.021

    Article  CAS  Google Scholar 

  43. Simonyan, A., Gabrielyan, B., Minasyan, S., et al., . Genotoxicity of water contaminants from the basin of Lake Sevan, Armenia evaluated by the comet assay in Gibel carp (Carassius auratus gibelio) and Tradescantia bioassays, Bull. Environ. Contam. Toxicol., 2016, vol. 96, no. 3, pp. 309–313. https://doi.org/10.1007/s00128-015-1720-4

    Article  CAS  PubMed  Google Scholar 

  44. Singh, N.P., McCoy, M.T., Tice, R.R., and Schneider, E.L., A simple technique for quantitation of low levels of DNA damage in individual cells, Exp. Cell Res., 1988, vol. 175, no. 1, pp. 184–191. https://doi.org/10.1016/0014-4827(88)90265-0

    Article  CAS  PubMed  Google Scholar 

  45. Struwe, M., Greulich, K.O., Suter, W., and Plappert-Helbig, U., The photo comet assay-A fast screening assay for the determination of photogenotoxicity in vitro, Mutat. Res. Genet. Toxicol. Environ. Mutagen, 2007, vol. 632, nos. 1–2, pp. 44–57. https://doi.org/10.1016/j.mrgentox.2007.04.014

    Article  CAS  Google Scholar 

  46. Trinder, P., Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor, Ann. Clin. Biochem., 1969a, vol. 6, no. 1, pp. 24–27. https://doi.org/10.1177/000456326900600108

    Article  CAS  Google Scholar 

  47. Trinder, P., A simple turbidimetric method for the determination of serum cholesterol, Ibid., 1969b, vol. 6, no. 5, pp. 165–166. https://doi.org/10.1177/000456326900600505

    Article  CAS  Google Scholar 

  48. Tsangaris, C., Vergolyas, M., Fountoulaki, E., and Goncharuk, V.V., Genotoxicity and oxidative stress biomarkers in Carassius gibelio as endpoints for toxicity testing of Ukrainian polluted river waters, Ecotoxicol. Environ. Saf., 2011, vol. 74, no. 8, pp. 2240–2244. https://doi.org/10.1016/j.ecoenv.2011.08.010

    Article  CAS  PubMed  Google Scholar 

  49. Vijg, J., From DNA damage to mutations: All roads lead to aging, Ageing Res. Rev., 2021, vol. 68, Article 101316. https://doi.org/10.1016/j.arr.2021.101316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Villella, I.V., de Oliveira, I.M., Silva, J., and Henriques, J.A.P., DNA damage and repair in haemolymph cells of golden mussel (Limnoperna fortunei) exposed to environmental contaminants, Mutat. Res. Genet. Toxicol. Environ. Mutagen, 2006, vol. 605, nos. 1–2, pp. 78–86. https://doi.org/10.1016/j.mrgentox.2006.02.006

    Article  CAS  Google Scholar 

  51. Vinogradov, G.D., Physiological and biochemical state of commercial ichthyofauna under the conditions of dissemination of xenobiotics in the basin of the Belaya River, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow Agricult. Acad., Moscow, 2011.

  52. Wagner, T. and Congleton, J.L., Blood chemistry correlates of nutritional condition, tissue damage, and stress in migrating juvenile chinook salmon (Oncorhynchus tshawytscha), Can. J. Fish. Aquat. Sci., 2004, vol. 61, no. 7, pp. 1066–1074. https://doi.org/10.1139/f04-050

    Article  CAS  Google Scholar 

  53. Wang, J., DNA damage and apoptosis, Cell Death Differ., 2001, vol. 8, no. 11, pp. 1047–1048. https://doi.org/10.1038/sj.cdd.4400938

    Article  CAS  PubMed  Google Scholar 

  54. Witeska, M., Kondera, E., Ługowska, K., and Bojarski, B., Hematological methods in fish – not only for beginners, Aquaculture, 2022, vol. 547, Article 737498. https://doi.org/10.1016/j.aquaculture.2021.737498

    Article  CAS  Google Scholar 

  55. Zabotkina, E.A. and Serednyakov, V.E., Seasonal dynamics of some blood parameters of the Pereslavl vendace (Coregonus albula), Tr. Inst. Biol. Vnutr. Vod Ross. Akad. Nauk, 2020, vol. 93, no. 90, pp. 91–97. https://doi.org/10.24411/0320-3557-2020-10014

    Article  Google Scholar 

  56. Zabotkina, E.A., Lapirova, T.B., Flerova, E.A., et al., Effect of ecological isolation on the immunophysiological parameters of the bream Abramis brama on the example of Lake Chashnitskoye and the Rybinsk Reservoir, Vopr. Rybolovstva, 2017, vol. 18, no. 1, pp. 77–84.

    Google Scholar 

  57. Zhelev, Z., Mollova, D., and Boyadziev, P., Morphological and hematological parameters of Carassius gibelio (Pisces: Cyprinidae) in conditions of anthropogenic pollution in Southern Bulgaria. Use of hematological parameters as biomarkers, Trakia J. Sci., 2016, vol. 14, no. 1, pp. 1–15. https://doi.org/10.15547/tjs.2016.01.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Zhukova.

Ethics declarations

Conflict of interests. The author declares that she has no conflict of interest.Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konkova, A.V., Faizulina, D.R., Shirina, Y.M. et al. Hematological and Genotoxic Indicators of the Freshwater Beam Abramis brama and Prussian Carp Carassius gibelio (Cyprinidae) in the Volga Delta. J. Ichthyol. 63, 341–348 (2023). https://doi.org/10.1134/S0032945223020091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945223020091

Keywords:

Navigation