Skip to main content
Log in

Components of Blood and Blood Cytochemical and Biochemical Characteristics of Three Cartilaginous Fish Species in Orders Orectolobiformes and Myliobatiformes

  • SHARKS, SKATES, AND CHIMAERAS (CHONDRICHTHYES)
  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

The results of hematological, cytochemical, and biochemical surveys for fish blood in the specimen Ocellate river stingray Potamotrygon motoro and two specimens of cat sharks including the Halmahera epaulette shark Hemiscyllium halmahera and the grey bambooshark Chiloscyllium griseumare have been reported. A comparison in the parameters analyzed in the survey between the common carp Cyprinus carpio, the wels catfish Silurus glanis, and the sterlet Acipenser ruthenus has been performed. A high percentage of eosinophils involved in antiparasite immunity in the Cartilaginous fishes is recorded. A high content of cationic protein in lysosomes of neutrophils in these fish species can indicate a considerable potent phagocytic activity of the latter. A low amount of alanine aminotransferase in the analyzed shark and ray specimens compared to the bony fish was recorded, which indicate the strength of membranes in hepatocytes and cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Arnold, J.E., Hematology of the sandbar shark, Carcharhinus plumbeus: Standardization of complete blood count techniques for elasmobranchs, Vet. Clin. Pathol., 2005, vol. 34, no. 2, pp. 115–123. https://doi.org/10.1111/j.1939-165X.2005.tb00023.x

    Article  Google Scholar 

  2. Binder, Th., Diem, H., Fuchs, R., et al., Pappenheim-Färbung: Beschreibung einer hämatologischen Standardfärbung—Geschichte, Chemie, Durchführung, Artefakte und Problemlösungen/Pappenheim Stain: Description of a hematological standard stain – history, chemistry, procedure, artifacts and problem solutions, Laboratoriumsmedizin, 2012, vol. 36, no. 5, pp. 293–309. https://doi.org/10.1515/labmed-2012-0027

    Article  CAS  Google Scholar 

  3. Bircan-Yildirim, Y., Çek, Ş., Basusta, N., and Atik, E., Histology and morphology of the epigonal organ with special referance to the lymphomyeloid system in Rhinobatos rhinobatos, Turk. J. Fish. Aquat. Sci., 2011, vol. 11, pp. 351–358. https://doi.org/10.4194/1303-2712-v11_3_03

    Article  Google Scholar 

  4. Bridle, A., Nosworthy, E., Polinski, M., and Nowak, B., Evidence of an antimicrobial-immunomodulatory role of Atlantic salmon cathelicidins during infection with Yersinia ruckeri, PLoS ONE, 2011, vol. 6, no. 8, Article e23417. https://doi.org/10.1371/journal.pone.0023417

    Article  CAS  Google Scholar 

  5. Browne, M.J., Feng, C.Y., Booth, V., and Rise, M.L., Characterization and expression studies of Gaduscidin-1 and Gaduscidin-2; paralogous antimicrobial peptide-like transcripts from Atlantic cod (Gadus morhua), Dev. Comp. Immunol., 2011, vol. 35, no. 3, pp. 399–408. https://doi.org/10.1016/j.dci.2010.11.010

    Article  CAS  Google Scholar 

  6. Burgos-Aceves, M.A., Campos-Ramos, R., and Guerrero-Tortolero, D.A., Description of peripheral blood cells and differential blood analysis of captive female and male leopard grouper Mycteroperca rosacea as an approach for diagnosing diseases, Fish Physiol. Biochem., 2010, vol. 36, no. 4, pp. 1263–1269. https://doi.org/10.1007/s10695-010-9406-7

    Article  CAS  Google Scholar 

  7. Castiglione, S., Tesone, G., Piccolo, M., et al., A new method for testing evolutionary rate variation and shifts in phenotypic evolution, Methods Ecol. Evol., 2018, vol. 9, no. 4, pp. 974–983. https://doi.org/10.1111/2041-210X.12954

    Article  Google Scholar 

  8. Chang, C.I., Pleguezuelos, O., Zhang, Y.A., et al., Identification of a novel cathelicidin gene in the rainbow trout, Oncorhynchus mykiss, Infect. Immun., 2005, vol. 73, no. 8, pp. 5053–5064. https://doi.org/10.1128/IAI.73.8.5053-5064.2005

    Article  CAS  Google Scholar 

  9. Chang, J., Rabosky, D.L., Smith, S.A., et al., 2019. An R package and online resource for macroevolutionary studies using the ray-finned fish tree of life, Methods Ecol. Evol., vol. 10, no. 7, pp. 1118–1124. https://doi.org/10.1111/2041-210X.13182

    Article  Google Scholar 

  10. Claus, M., Antoni, C., and Hofmann, B., Factors associated with elevated alanine aminotransferase in employees of a German chemical company: Results of a large cross-sectional study, BMC Gastroenterol., 2021, vol. 21, no. 1, Article 25. https://doi.org/10.1186/s12876-021-01601-2

    Article  CAS  Google Scholar 

  11. Cuesta, A., Meseguer, J., and Esteban, M.A., The antimicrobial peptide hepcidin exerts an important role in the innate immunity against bacteria in the bony fish gilthead seabream, Mol. Immunol., 2008, vol. 45, no. 8, pp. 2333–2342. https://doi.org/10.1016/j.molimm.2007.11.007

    Article  CAS  Google Scholar 

  12. de Oliveira, A.T., Santos, M.Q.D.C., de Araujo, M.L.G., et al., Hematological parameters of three freshwater stingray species (Chondrichthyes: Potamotrygonidae) in the middle Rio Negro, Amazonas state, Biochem. Syst. Ecol., 2016, vol. 69, pp. 33–40. https://doi.org/10.1016/j.bse.2016.07.002

    Article  CAS  Google Scholar 

  13. Dong, H.Th., Channarong, R., Hai, D.L., et al., Naturally concurrent infections of bacterial and viral pathogens in disease outbreaks in cultured Nile tilapia (Oreochromis niloticus) farms, Aquaculture, 2015, vol. 448, pp. 427–435. https://doi.org/10.1016/j.aquaculture.2015.06.027

    Article  Google Scholar 

  14. Dove, A.D.M., Arnold, J., and Clauss, T.M., 2010. Blood cells and serum chemistry in the world’s largest fish: The whale shark Rhincodon typus, Aquat. Biol., vol. 9, no. 2, pp. 177–183. https://doi.org/10.3354/ab00252

    Article  Google Scholar 

  15. Esteban, M.A., Cuesta, A., Chaves-Pozo, E., and Meseguer, J., Phagocytosis in teleosts. Implications of the new cells involved, Biology, 2015, vol. 4, no. 4, pp. 907–922. https://doi.org/10.3390/biology4040907

    Article  CAS  Google Scholar 

  16. Flajnik, M.F. and Rumfelt, L.L., The Immune System of Cartilaginous Fish, in Origin and Evolution of the Vertebrate Immune System, Berlin; Heidelberg: Springer, 2000, pp. 249–270. https://doi.org/10.1007/978-3-642-59674-2_11

  17. Galaktionov, V.G., Evolyutsionnaya immunologiya (Evolutionary Immunology), Moscow: Akademkniga, 2005.

  18. Galvin, Z., McDonough, A., Ryan, J., and Stewart, S., Blood alanine aminotransferase levels >1.000 IU/L—causes and outcomes, Clin. Med., 2015, vol. 15, no. 3, pp. 244–247. https://doi.org/10.7861/clinmedicine.15-3-244

    Article  Google Scholar 

  19. Gordeev, I.I., Mikryakov, D.V., Balabanova, L.V., and Mikryakov, V.R., The cell composition of the peripheral blood and some hematopoietic organs in the Antarctic starry skate Amblyraja georgiana (Norman, 1938) (Rajiformes: Rajidae) from the Scotia Sea, Russ. J. Mar. Biol., 2019, vol. 45, no. 6, pp. 481–485. https://doi.org/10.1134/S1063074019060038

    Article  Google Scholar 

  20. Grushko, M.P., Khvostova, S.M., and Kryuchkov, V.N., Features of hematopoiesis in representatives of cartilaginous fish, Vestn. Astrakhan. Gos. Tekhn. Univ. Ser. Rybn. Khoz-vo, 2012, no. 1, pp. 133–135.

  21. Hammerschlag, N., Osmoregulation in elasmobranchs: A review for fish biologists, behaviourists and ecologists, Mar. Freshw. Behav. Physiol., 2006, vol. 39, no. 3, pp. 209–228. https://doi.org/10.1080/10236240600815820

    Article  CAS  Google Scholar 

  22. Havixbeck, J.J. and Barreda, D.R., Neutrophil development, migration, and function in teleost fish, Biology, 2015, vol. 4, no. 4, pp. 715–734. https://doi.org/10.3390/biology4040715

    Article  CAS  Google Scholar 

  23. Ivanov, A.A., Pronina, G.I., and Koryagina, N.Yu., Gematologiya poikilotermnykh gidrobiontov (Hematology of Poikilothermic Hydrobionts), Irkutsk: Megaprint, 2018.

  24. Kuz’mina, V.V., Protsessy pishchevareniya u ryb. Novye fakty i gipotezy (Digestive Processes in Fish. New Facts and Hypotheses), Yaroslavl: Filigran’, 2018.

  25. Luer, C.A., Walsh, C.J., and Bodine, A.B., The Immune System of Sharks, Skates and Ray, in Biology of Sharks and Their Relatives, Boca Raton: CRC Press, 2004, pp. 369–395.

    Google Scholar 

  26. Manca, R., Delia, M., Abat, M., et al., Evolutionary conservation of a regulative pathway of erythropoiesis in poikilothermic vertebrates, Sci. Rep., 2022, vol. 12, no. 1, Article 3307. https://doi.org/10.1038/s41598-022-06617-6

    Article  CAS  Google Scholar 

  27. Martin, R.A., A review of shark agonistic displays: comparison of display features and implications for shark-human interactions, Mar. Freshw. Behav. Physiol., 2007, vol. 40, no. 1, pp. 3–34. https://doi.org/10.1080/10236240601154872

    Article  Google Scholar 

  28. Martins, B.O., Franco-Belussi, L., Siqueira, M.S., et al., The evolution of red blood cell shape in fishes, J. Evol. Biol., 2021, vol. 34, no. 3, pp. 537–548. https://doi.org/10.1111/jeb.13757

    Article  CAS  Google Scholar 

  29. Meshcheryakova, D.A., Derkho, M.A., and Sereda, T.I., Assessment of leukogram changes in mammary gland tumors in dogs, Vestn. Novosib. Gos. Agrar. Univ., 2014, vol. 2, no. 31, pp. 125–129.

    Google Scholar 

  30. Old, J.M. and Huveneers, C., Morphology of the blood cells from three species of wobbegong sharks (Orectolobus species) on the east coast of New South Wales, Zoo Biol., 2006, vol. 25, no. 1, pp. 73–82. https://doi.org/10.1002/zoo.20079

    Article  Google Scholar 

  31. Pappenheim, A., Zur Blutzellf ä rbung im klinischen Blut-trockenpr ä parat und zur histologischen Schnittpr ä paratf ä rbung der h ä matopoetischen Gewebe nach meinen Methoden, Folia Haematologica, 1912, vol. 13, pp. 339–345.

    Google Scholar 

  32. Petrovskii, S.V., Kurdeko, A.P., Belko, A.A., and Kovzov, V.V., Metodicheskie ukazaniya po otboru biologicheskogo materiala dlya laboratornykh issledovanii (Guidelines for the Selection of Biological Material for Laboratory Research), Vitebsk: Uchrezhd. Obrazov. Vitebsk. Gos. Akad. Veterinar. Med., 2017.

  33. Pronina, G.I. and Koryagina, N.Yu., Reference values of physiological and immunological parameters of hydrobionts of different species, Vestn. Astrakhan. Gos. Tekhn. Univ. Ser. Rybn. Khoz-vo, 2015, no. 4, pp. 103–108.

  34. Pronina, G.I. and Koryagina, N.Yu., Metodologiya fiziologo-immunologicheskoi otsenki gidrobiontov (Methodology of Physiological and Immunological Assessment of Hydrobionts), Moscow: Lan’, 2017.

  35. Rojas, V., Morales-Lange, B., Avendaño-Herrera, R., et al., Detection of muscle-specific creatine kinase expression as physiological indicator for Atlantic salmon (Salmo salar L.) skeletal muscle damage, Aquaculture, 2018, vol. 496, pp. 66–72. https://doi.org/10.1016/j.aquaculture.2018.07.006

    Article  CAS  Google Scholar 

  36. Smith, N.C., Rise, M.L., and Christian, S.L., A comparison of the innate and adaptive immune systems in cartilaginous fish, ray-finned fish, and lobe-finned fish, Front. Immunol., 2019, vol. 10, Article 2292. https://doi.org/10.3389/fimmu.2019.02292

    Article  CAS  Google Scholar 

  37. Smith, S.L., Sim, R.B., and Flajnik, M.F., Immunobiology of the Shark, Boca Raton: CRC Press, 2014. https://doi.org/10.1201/b17773

  38. Stein, R.W., Mull, C.G., Kuhn, T.S., et al., Global priorities for conserving the evolutionary history of sharks, rays and chimaeras, Nat. Ecol. Evol., 2018, vol. 2, no. 2, pp. 288–298. https://doi.org/10.1038/s41559-017-0448-4

    Article  Google Scholar 

  39. Walker, T.I., Day, R.W., Awruch, C.A., et al., Ecological vulnerability of the chondrichthyan fauna of southern Australia to the stressors of climate change, fishing and other anthropogenic hazards, Fish Fish., 2021, vol. 22, no. 5, pp. 1105–1135. https://doi.org/10.1111/faf.12571

    Article  Google Scholar 

  40. Walsh, C.J., Toranto, J.D., Gilliland, C.T., et al., Nitric oxide production by nurse shark (Ginglymostoma cirratum) and clearnose skate (Raja eglanteria) peripheral blood leucocytes, Fish Shellfish Immunol., 2006, vol. 20, no. 1, pp. 40–46. https://doi.org/10.1016/j.fsi.2005.03.011

    Article  CAS  Google Scholar 

  41. Whitney, N.M., Lear, K.O., Gaskins, L.Ch., and Gleiss, A.C., The effects of temperature and swimming speed on the metabolic rate of the nurse shark (Ginglymostoma cirratum, Bonaterre), J. Exp. Mar. Biol. Ecol., 2016, vol. 477, pp. 40–46. https://doi.org/10.1016/j.jembe.2015.12.009

    Article  Google Scholar 

  42. Witeska, M., Kondera, E., Ługowska, K., and Bojarski, B., Hematological methods in fish – not only for beginners, Aquaculture, 2022, vol. 547. Article 737498. https://doi.org/10.1016/j.aquaculture.2021.737498

    Article  CAS  Google Scholar 

  43. Yukhnovets, A.A., Cytochemical parameters of peripheral blood leukocytes in thyroid diseases, Vestn. Vitebsk. Gos. Med. Univ., 2003, vol. 2, no. 3, pp. 71–78.

  44. Zhiteneva, L.D., Makarov, E.V., and Rudnitskaya, O.A., Evolyutsiya krovi (Evolution of Blood), Rostov-on-Don: Delovoi Mir, 2001.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Pronina.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interests.

Statement on the welfare of humans or animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by O. Zhiryakova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pronina, G.I., Orlov, A.M., Meintser, I.V. et al. Components of Blood and Blood Cytochemical and Biochemical Characteristics of Three Cartilaginous Fish Species in Orders Orectolobiformes and Myliobatiformes. J. Ichthyol. 62, 1352–1360 (2022). https://doi.org/10.1134/S0032945222060248

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945222060248

Keywords:

Navigation