Skip to main content
Log in

Orosensory Preferences and Feeding Behavior of Cladistia: A Comparison of Gray Bichir Polypterus senegalus and Saddle Bichir P. endlicherii (Polypteridae)

  • BICHIRS (POLYPTERIDAE)
  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

For the first time, we report that Cladistia have the ability to assess the taste qualities of food objects and thus have different taste preferences, like Chondrostei and Teleostei studied earlier. Sucrose (0.1 M) has a aversive taste for gray bichir Polypterus senegalus and saddle bichir P. endlicherii, which is consistent with the predation of these species. Calcium chloride (0.1 M) has the same taste properties for both species; sodium chloride (0.1 M) was aversive for gray bichir only. The taste of citric acid (0.1 M) is attractive to gray bichir, while the saddle bichir is indifferent to it. In P. senegalus, only glutamic acid, out of 21 amino acids tested (L-isomers, 0.1–0.001 M), significantly increases the intake of the flavored pellets, 10 amino acids reduce intake (the fish response to proline, glutamine, and arginine is the most significant). The remaining 10 amino acids do not affect the intake of pellets. The consumption of pellets with an attractive taste does not depend on the size of the pellets, but decreases with increasing of their hardness. All pellets with water extract of echinoderms (Echinodermata: holothuria Holothuria atra, and starfish species Fromia milleporella, Linckia laevigata, and Culcita novaeguineae) were rejected, which indicates high versatility of natural deterrents. For orosensory testing, bichirs rarely re-grasp pellets of all types, which may be due to the twilight-night type of activity of these fish and their weak vision. Testing pellets by saddle bichir is relatively long (on average, up to 15–22 s); this process is realized according to two different stereotypes, like in other fish species. Consumption is less often preceded by repeated grasping, and the grasped object is held longer than before refusal to swallow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Ayoade, A.A., Adeyemi, S.A., and Ayedun, A.S., Food and feeding habits of Hepsetus odoe and Plypterus senegalus in Eleyele Lake, Southwestern Nigeria, Tropic. Freshw. Biol., 2018, vol. 27, no. 1, pp. 43–53. https://doi.org/10.4314/tfb.v27i1.4

    Article  Google Scholar 

  2. Baron, V.D. and Pavlov, D.S., Discovery of specialized electrogenerating activity in two species of Polypterus (Polypteriformes, Osteichthyes), J. Ichthyol., 2003, vol. 43, no. Suppl. 2, pp. S259–S261.

  3. Bartsch, P., Aspects of craniogenesis and evolutionary biology in polypteriform fishes, Neth. J. Zool., 1996, vol. 47, no. 4, pp. 365–381. https://doi.org/10.1163/156854297X00067

    Article  Google Scholar 

  4. Bartsch, P. and Britz, R., A single micropyle in the eggs of the most basal living actinopterygian fish, Polypterus (Actinopterygii, Polypteriformes), J. Zool., 1997, vol. 241, no. 3, pp. 589–592. https://doi.org/10.1111/j.1469-7998.1997.tb04850.x

    Article  Google Scholar 

  5. Bartsch, P., Gemballa, S., and Piotrowski, T., The embryonic and larval development of Polypterus senegalus Cuvier, 1829: its staging with reference to external and skeletal features, behaviour and locomotory habits, Acta Zool., 1997, vol. 78, no. 4, pp. 309–328. https://doi.org/10.1111/j.1463-6395.1997.tb01014.x

    Article  Google Scholar 

  6. Behaviour of Teleost Fishes, Pitcher, T.J., Ed., London: Chapman & Hall, 1993.

    Google Scholar 

  7. Betancur-R, R., Wiley, E.O., Arratia, G., et al., Phylogenetic classification of bony fishes, BMC Evol. Biol., 2017, vol. 17, article 162. https://doi.org/10.1186/s12862-017-0958-3

    Article  Google Scholar 

  8. Bjerring, H.C., the morphology of the organum olfactus of a 32 mm embryo of the brachiopterygian fish Polypterus senegalus, Acta Zool., 1988, vol. 69, no. 1, pp. 47–54. https://doi.org/10.1111/j.1463-6395.1988.tb00900.x

    Article  Google Scholar 

  9. Bone, Q. and Moore, R.H., Biology of Fishes, New York: Taylor & Francis, 2008. https://doi.org/10.1201/978, 1134, p. 1863.

  10. Braford, M.R.,Jr. and Northcutt, R.G., Olfactory bulb projections in the Bichir, Polypterus, J. Comp. Neurol., 1974, vol. 156, no. 2, pp. 165–178. https://doi.org/10.1002/cne.901560204

    Article  Google Scholar 

  11. Britz, R., Polypterus teugelsi, a new species of bichir from the Upper Cross River system in Cameroon (Actinopterygii: Cladistia: Polypteridae), Ichthyol. Explor. Freshw., 2004, vol. 15, no. 2, pp. 179–186.

    Google Scholar 

  12. Britz, R. and Bartsch, P., On the reproduction and early development of Erpetoichthys calabaricus, Polypterus senegalus, and Polypterus ornatipinnis (Actinopterygii: Polypteridae), J. High Resolut. Chromatogr. Chromatogr. Commun., 1998, vol. 9, no. 4, pp. 325–334.

    Google Scholar 

  13. Britz, R. and Bartsch, P., The myth of dorsal ribs in gnathostome vertebrates, Proc. Biol. Sci., 2003, vol. 270, Suppl. 1, pp. S1–S4. https://doi.org/10.1098/rsbl.2003.0035

  14. Britz, R. and Johnson, G.D., On the homology of the posteriormost gill arch in polypterids (Cladistia, Actinopterygii), Zool. J. Linn. Soc., 2003, vol. 138, pp. 495–503. https://doi.org/10.1046/j.1096-3642.2003.t01-1-00067.x

    Article  Google Scholar 

  15. Clemen, G., Bartsch, P., and Wacker, K., Dentition and dentigerous bones in juveniles and adults of Polypterus senegalus (Cladistia, Actinopterygii), Ann. Anat., 1998, vol. 180, no. 3, pp. 211–221. https://doi.org/10.1016/s0940-9602(98)80076-9

    Article  CAS  Google Scholar 

  16. Coates, M., Plenty of fish in the tree, Nature, 2017, vol. 549, pp. 167–169. https://doi.org/10.1038/549167a

    Article  CAS  Google Scholar 

  17. Daget, J., Gayet, M., Meunier, F.J., and Sire, J.-Y., Major discoveries on the dermal skeleton of fossil and recent polypteriforms: a review, Fish Fish. (Oxf.), 2001, vol. 2, no. 2, pp. 113–124. https://doi.org/10.1046/j.1467-2960.2001.00046.x

    Article  Google Scholar 

  18. Dankwa, H.R., Biology of Polypterus senegalus (Pisces, Polypteridae) in the Pru River, Ghana, in Fish Biodiversity: Local Studies as Basis for Global Inferences, ACP-EU Fish. Res. Rep, 2004, no. 14, pp. 23–24.

  19. De Mercado, E., Larran, A., Pinedo, J., and Tomas-Almenar, C., Skin mucous: a new approach to assess stress in rainbow trout, Aquaculture, 2018, vol. 484, pp. 90–97. https://doi.org/10.1016/j.aquaculture.2017.10.031

    Article  CAS  Google Scholar 

  20. Fernández-Alacid, L., Sanahuja, I., Ordonez-Grande, B., et al., Skin mucus metabolites in response to physiological challenges: a valuable non-invasive method to study teleost marine species, Sci. Total Environ., 2018, vol. 644, pp. 1323–1335. https://doi.org/10.1016/j.scitotenv.2018.07.083

    Article  CAS  Google Scholar 

  21. Gardiner, B.G., Schaeffer, B., and Masserie, J.A., A review of the lower actinopterygian phylogeny, Zool. J. Linnean Soc., 2005, vol. 144, no. 4, pp. 511–525. https://doi.org/10.1111/j.1096-3642.2005.00181.x

    Article  Google Scholar 

  22. Giles, S., Xu, G.-H., Near, T.J., and Friedman, M., Early members of “living fossil” lineage imply later origin of modern ray-finned fishes, Nature, 2017, vol. 549, pp. 265–268. https://doi.org/10.1038/nature23654

    Article  CAS  Google Scholar 

  23. Goli, S., Jafari, V., Ghorbani, R., and Kasumyan, A., Taste preferences and taste thresholds to classical taste substances in the carnivorous fish, kutum Rutilus frisii kutum (Teleostei: Cyprinidae), Physiol. Behav., 2015, vol. 140, pp. 111–117. https://doi.org/10.1016/j.physbeh.2014.12.022

    Article  CAS  Google Scholar 

  24. Harborne, J.B., Introduction to Ecological Biochemistry, London: Acad. Press, 1993.

    Google Scholar 

  25. Hickley, P. and Bailey, R.G., Fish communities in the perennial wetland of the Sudd, southern Sudan, Freshw. Biol., 1986, vol. 16, no. 5, pp. 695–709. https://doi.org/10.1111/j.1365-2427.1986.tb01011.x

    Article  Google Scholar 

  26. Hickley, P. and Bailey, R.G., Food and feeding relationships of fish in the Sudd swamps (River Nile, southern Sudan), J. Fish. Biol., 1987, vol. 30, no. 2, pp. 147–159. https://doi.org/10.1111/j.1095-8649.1987.tb05741.x

    Article  Google Scholar 

  27. Hidaka, I., Taste receptor stimulation and feeding behavior in the puffer, in Chemoreception in Fishes, Amsterdam: Elsevier Sci. Pub. Comp., 1982, pp. 243–257.

    Google Scholar 

  28. Hurley, I.A., Mueller, R.L., Dunn, K.A., et al., A new time-scale for ray-finned fish evolution, Proc. R. Soc. B., 2007, vol. 274, no. 1609, pp. 489–498. https://doi.org/10.1098/rspb.2006.3749

    Article  CAS  Google Scholar 

  29. Jackson, A.Y., Adite, A., Roach, K.A., and Winemiller, K.O., fish assemblages of an african river floodplain: a test of alternative models of community structure, Ecol. Freshw. Fish., 2013, vol. 22, no. 2, pp. 295–306. https://doi.org/10.1111/eff.12026

    Article  Google Scholar 

  30. Jacobs, C. and Holzman, R., Conserved spatio-temporal patterns of suction-feeding flows across aquatic vertebrates: a comparative flow visualization study, J. Exp. Biol., 2018, vol. 221, no. 7, article jeb174912. https://doi.org/10.1242/jeb.174912

    Article  Google Scholar 

  31. Jessen, H.L., Interrelationships of actinopterygians and brachiopterygians: evidence from pectoral anatomy, in Interrelationships of Fishes, New York: Acad. Press, 1973, pp. 227–232.

    Google Scholar 

  32. Jobling, M., Gomes, E., and Dias, J., Feed types, manufacture and ingredients, in Food Intake in Fish, Oxford: Blackwell, 2001, pp. 25–48. https://doi.org/10.1002/9780470999516.ch2

  33. Jollie, M., Development of the head and pectoral skeleton of polypterus with a note on scales (Pisces: Actinopterygii), J. Zool., vol. 204, 1984, no. 4, pp. 469–507. https://doi.org/10.1111/j.1469-7998.1984.tb02382.x

  34. Jorgensen, J.M., Fine structure of the ampullary organs of the bichir Polypterus senegalus Cuvier, 1829 (Pisces: Brachiopterygii) with some notes on the phylogenetic development of electroreceptors, Acta Zool., 1982, vol. 63, no. 4, pp. 211–217. https://doi.org/10.1111/j.1463-6395.1982.tb00780.x

    Article  Google Scholar 

  35. Kasumyan, A.O., Gustatory reception and feeding behavior in fish, J. Ichthyol., 1997, vol. 37, no. 1, pp. 72–86.

    Google Scholar 

  36. Kasumyan, A.O., The intraoral tactile reception and its interaction with the gustatory system in fish, Dokl. Biol. Sci., 2012, vol. 447, pp. 374–376. https://doi.org/10.1134/S0012496612060087

    Article  CAS  Google Scholar 

  37. Kasumyan, A.O., Behavior and gustatory reception of air-breathing catfishes (Clariidae), J. Ichthyol., 2014, vol. 54, no. 10, pp. 934–943. https://doi.org/10.1134/S0032945214100075

    Article  Google Scholar 

  38. Kasumyan, A.O., Taste attractiveness of free amino acids and their physicochemical and biological properties (as exemplified by fishes), J. Evol. Biochem. Physiol., 2016, vol. 52, no. 4, pp. C. 271–281. https://doi.org/10.1134/S0022093016040013

  39. Kasumyan, A., Olfaction and gustation in acipenseridae, with special references to the siberian sturgeon, Acipenser baerii, in The Siberian sturgeon (Acipenser baerii, Brandt, 1869), vol. 1: Biology, Cham: Springer, 2018, pp. 173–205. https://doi.org/10.1007/978-3-319-61664-3_10

  40. Kasumyan, A. and Døving, K.B., Taste preferences in fish, Fish Fish. (Oxf.), 2003, vol. 4, no. 4, pp. 289–347. https://doi.org/10.1046/j.1467-2979.2003.00121.x

    Article  Google Scholar 

  41. Kasumyan, A.O. and Kazhlaev, A.A., Behavioral responses of early juveniles of Siberian sturgeon Acipenser baeri and stellate sturgeon A. stellatus (Acipenseridae) to gustatory stimulating substances, J. Ichthyol., 1993, vol. 33, no. 9, pp. 85–97.

    Google Scholar 

  42. Kasumyan, A.O. and Marusov, E.A., Odor stimulation and relation to taste stimuli in the blind cave fish Astyanax fasciatus, Biology Bull., 2018, vol. 45, no. 6, pp. 557–563. https://doi.org/10.1134/S1062359018060043

    Article  Google Scholar 

  43. Kasumyan, A.O. and Mikhailova, E.S., Taste preferences and feeding behavior of three-spined stickleback Gasterosteus aculeatus of populations of basins of the Atlantic and Pacific oceans, J. Ichthyol., 2014, vol. 54, no. 7, pp. 453–475. https://doi.org/10.1134/S003294521404002X

    Article  Google Scholar 

  44. Kasumyan, A.O. and Morsy, A.M.H., Taste preference for classic taste substances in juveniles of the grass carp Ctenopharyngodon idella (Cyprinidae, Pisces) reared on various diets, Dokl. Biol. Sci., 1997, vol. 357, pp. 562–564.

    Google Scholar 

  45. Kasumyan, A.O. and Mouromtsev, G.E., The teleost fish, blue gourami Trichopodus trichopterus, distinguishes the taste of chemically similar substances, Sci. Rep., 2020., vol. 10, article 7487. https://doi.org/10.1038/s41598-020-64556-6

    Article  CAS  Google Scholar 

  46. Kasumyan, A.O. and Nikolaeva, E.V., Comparative analysis of taste preferences in fishes with different ecology and feeding, J. Ichthyol., 2002, vol. 42, no. Suppl. 2, pp. S203–S214.

  47. Kasumyan, A.O. and Sidorov, S.S., Behavioral responses of Caspian brown trout parr, Salmo trutta caspius Kessler, to the main types of sapid substances, Moscow Univ. Biol. Sci. Bull., 1993, vol. 48, no. 2, pp. 48–53.

    Google Scholar 

  48. Kasumyan, A.O. and Sidorov, S.S., Taste preferences of the brown trout Salmo trutta from three geographically isolated populations, J. Ichthyol., 2005, vol. 45, no. 1, pp. 111–123.

    Google Scholar 

  49. Kasumyan, A.O. and Sidorov, S.S., Taste preferences and behavior of testing gustatory qualities of food in stone loach Barbatula barbatula (Balitoridae, Cypriniformes), J. Ichthyol., 2010a, vol. 50, no. 8, pp. 682–693. https://doi.org/10.1134/S0032945210080138

    Article  Google Scholar 

  50. Kasumyan, A.O. and Sidorov, S.S., Behavior of food objects testing by taste in the carp Cyprinus carpio in the norm and at chronic anosmia, J. Ichthyol., 2010b, vol. 50, no. 11, pp. 1043–1059. https://doi.org/10.1134/S003294521011010X

    Article  Google Scholar 

  51. Kasumyan, A.O. and Sidorov, S.S., Effects of the long term anosmia combined with vision deprivation on the taste sensitivity and feeding behavior of the rainbow trout Parasalmo (=Oncorhynchus) mykiss, J. Ichthyol., 2012, vol. 52, no. 1, pp. 109–119. https://doi.org/10.1134/S0032945212010079

    Article  Google Scholar 

  52. Kasumyan, A.O. and Tinkova, T.V., Spreading of deterrency as a means of chemical defense among aquatic organisms inhabiting the coral reefs of Vietnam, Dokl. Biol. Sci., 2014, vol. 454, pp. 39–42. https://doi.org/10.1134/S0012496614010086

    Article  CAS  Google Scholar 

  53. Kasumyan, A.O., Marusov, E.A., and Sidorov, S.S., The effect of food odor background on gustatory preferences and gustatory behavior of carp Cyprinus carpio and cod Gadus morhua, J. Ichthyol., 2009, vol. 49, no. 6, pp. 469–481. https://doi.org/10.1134/S003294520906006X

    Article  Google Scholar 

  54. Kasumyan, A., Isaeva, O., Dgebuadze, P., et al., Comatulids (Crinoidea, Comatulida) chemically defend against coral fish by themselves, without assistance from their symbionts, Sci. Rep., 2020, vol. 10, article 6150. https://doi.org/10.1038/s41598-020-63140-2

    Article  CAS  Google Scholar 

  55. Kasumyan, A.O., Isaeva, O.M., Tin’kova, T.V., et al., Chemical protection against fish in animals and plants of coral reefs of South Vietnam, Tropical Sci. Technol., 2017, vol. 11, no. 14. https://goo.su/a5sh

  56. Knights, B., Feeding behaviour and fish culture, in Nutrition and Feeding in Fish, London: Acad. Press, 1985, pp. 223–241.

    Google Scholar 

  57. Kröger, R.H.H., Gustafsson, O.S.E., and Tuminaite, I., Suspension and optical properties of the crystalline lens in the eyes of basal vertebrates, J. Morphol., 2014, vol. 275, no. 6, pp. 613–622. https://doi.org/10.1002/jmor.20240

    Article  Google Scholar 

  58. Ladich, F. and Tadler, A., Sound production in Polypterus (Osteichthyes: Polypteridae), Copeia, 1988, vol. 1988, no. 4, pp. 1076–1077. https://doi.org/10.2307/1445738

    Article  Google Scholar 

  59. Lauder, G.V., Evolution of the feeding mechanism in primitive actinopterygian fishes: a functional anatomical analysis of Polypterus, Lepisosteus, and Amia, J. Morphol., 1980, vol. 163, no. 3, pp. 283–317. https://doi.org/10.1002/jmor.1051630305

    Article  Google Scholar 

  60. Lemm, C.A., Growth and survival of Atlantic salmon fed semi-moist or dry starter diets, Progress. Fish Cult., 1983, vol. 45, no. 2, pp. 72–74. https://doi.org/10.1577/1548-8659(1983)45[72:GASOAS]2.0.CO;2

    Article  Google Scholar 

  61. Linnér, J. and Brannas, E., Behavioral response to commercial food of different sizes and self-initiated food size selection by Arctic char, Trans. Am. Fish. Soc., 1994, vol. 123, no. 3, pp. 416–422. https://doi.org/10.1577/1548-8659(1994)123%3C0416:BRT-CFO%3E2.3.CO;2

    Article  Google Scholar 

  62. Mikhailova, E.S. and Kasumyan, A.O., Taste preferences and feeding behavior in nine-spined stickleback (Pungitius pungitius) in three geographically distant populations, J. Ichthyol., 2015, vol. 55, no. 6, pp. 679–801. https://doi.org/10.1134/S0032945215050094

    Article  Google Scholar 

  63. Mikhailova, E.S. and Kasumyan, A.O., Orosensory food testing in fish: chronology of behavior, Biol. Bull., 2016, vol. 43, no. 4, pp. 318–328. https://doi.org/10.1134/S1062359016040105

    Article  Google Scholar 

  64. Mikhailova, E.S. and Kasumyan, A.O., Taste preferences and orosensory food testing in three spot gourami Trichopodus trichopterus (Osphronemidae), J. Ichthyol., 2021, vol. 61, no. 6, pp. 920–934. https://doi.org/10.1134/S0032945221060102

    Article  Google Scholar 

  65. Morescalchi, M.A., Barucca, M., Stingo, V., and Capriglione, T., Polypteridae (Actinopterygii: Cladistia) and DANA-SINEs insertions, Mar. Genomics, 2010, vol. 3, no. 2, pp. 79–84. https://doi.org/10.1016/j.margen.2010.06.001

    Article  Google Scholar 

  66. Moritz, T. and Britz, R., Fishes of the Pendjari National Park (Benin, West Africa), Bull. Fish Biol., 2019a, vol. 18, pp. 1–57.

    Google Scholar 

  67. Moritz, T. and Britz, R.,. Revision of the extant Polypteridae (Actinopterygii: Cladistia), Ichthyol. Explor. Freshw., 2019b, article IEF-1094, pp. 1–96. https://doi.org/10.23788/IEF-1094

  68. Nelson, J.S., Fishes of the World. Fourth Edition, Hoboken: John Wiley & Sons, 2006. https://doi.org/10.1111/j.1467-2979.2006.00227.x

  69. Otterå, H., Garatun-Tjeldstø, O., Julshamn, K., and Austrang, E., Feed preferences in juvenile cod estimated by inert lanthanid markers – effects of moisture content in the feed, Aquacult. Int., 2003, vol. 11, nos. 1–2, pp. 217–224. http://dx.doi.org/10.1023%2FA%3A1024144026308

    Article  Google Scholar 

  70. Patterson, C., Morphology and interrelationships of primitive actinopterygian fishes, Am. Zool., 1982, vol. 22, no. 2, pp. 241–259. https://doi.org/10.1093/icb/22.2.241

    Article  Google Scholar 

  71. Pavlov, D.S. and Kasumyan, A.O., Feeding diversity in fishes: trophic classification of fish, J. Ichthyol., 2002, vol. 42, no. Suppl. 2, pp. S137–S159.

  72. Pehrson, T., The early ontogeny of the sensory lines and the dermal skull in Polypterus, Acta Zool., vol. 39, 1958, nos. 2–3, pp. 241–258. https://doi.org/10.1111/j.1463-6395.1958.tb00387.x

  73. Pfeiffer, W., Das Geruchsorgan der Polypteridae (Pisces, Brachiopterygii), Z. Morph Tiere, 1968a, vol. 63, no. 1, pp. 75–110. https://doi.org/10.1007/BF00343428

    Article  Google Scholar 

  74. Pfeiffer, W., Die Fahrenholzschcn Organe der Dipnoi und Brachiopterygii, Z. Zellforsch, 1968b, vol. 90, no. 1, pp. 127–147. https://doi.org/10.1007/BF00496707

    Article  CAS  Google Scholar 

  75. Pfeiffer, W., Retina und Retinomotorik der Dipnoi und Brachiopterygii, Z. Zellforsch, 1968c, vol. 89, no. 1, pp. 62–72. https://doi.org/10.1007/BF00332652

    Article  CAS  Google Scholar 

  76. Pfeiffer, W., Der Geruchssinn der Polypteridae (Pisces, Brachiopterygii), Z. Vergl. Physiol., 1969, vol. 63, no. 2, pp. 151–164. https://doi.org/10.1007/BF00298337

    Article  Google Scholar 

  77. Poll, M., Anatomie et systematique des Polypterès, Bull. Acad. R. Sci. Belg., 1965, vol. 54, pp. 553–569.

    Google Scholar 

  78. Popper, A.N., Scanning electron microscopic study of the otolithic organs in the bichir (Polypterus bichir) and shovel-nose sturgeon (Scaphirhynchus platorynchus), J. Comp. Neurol., 1978, vol. 181, no. 1, pp. 117–128. https://doi.org/10.1002/cne.901810107

    Article  CAS  Google Scholar 

  79. Raincrow, J.D., Dewar, K., Stocsits, C., et al., Hox clusters of the bichir (Actinopterygii, Polypterus senegalus) highlight unique patterns of sequence evolution in gnathostome phylogeny, J. Exp. Zool. B. Mol. Dev. Evol., 2011, vol. 316B, no. 6, pp. 451–464. https://doi.org/10.1002/jez.b.21420, Raji, A., Saidu, A.K., Maryam, A.T., Preliminary studies on food and feeding habits of Polypterus endlicheri and Polypterus senegalus in Lake Chad, 18th Ann. Conf. Fish. Soc. Nigeria (Oweri, 2003), Owerri: FISON, 2004, pp. 186–193.

  80. Reutter, K. and Hansen, A., Subtypes of light and dark elongated taste bud cells in fish, in Fish Chemosenses, Enfield, NH: Sci. Pub., 2005, pp. 211–230.

    Book  Google Scholar 

  81. Roth, A., Electroreceptors in Brachiopterygii and Dipnoi, Naturwissenschaften, 1973, vol. 60, no. 2, p. 106. https://doi.org/10.1007/BF00610417

    Article  CAS  Google Scholar 

  82. Roth, A. and Tscharntke, H., Ultrastructure of the ampullary electroreceptors in lungfish and Brachiopterygii, Cell Tissue Res., 1976, vol. 173, no. 1, pp. 95–108. https://doi.org/10.1007/BF00219268

    Article  CAS  Google Scholar 

  83. Schulte, E. and Holl, A., Feinstruktur des Riechepithels von Calamoichthys Calabaricus J. A. Smith (Pisces, Brachiopterygii), Z. Zellforsch, 1971, vol. 120, no. 2, pp. 261–279. https://doi.org/10.1007/BF00335539

    Article  CAS  Google Scholar 

  84. Shephard, K.L., Functions for fish mucus, Rev. Fish Biol. Fish, 1994, vol. 4, no. 4, pp. 401–429. https://doi.org/10.1007/BF00042888

    Article  Google Scholar 

  85. Smith, I.P., Metcalfe, N.B., and Huntingford, F.A., the effects of food pellet dimensions on feeding responses by Atlantic salmon (Salmo salar L.) in a marine net pen, Aquaculture, 1995, vol. 130, nos. 2–3, pp. 167–175. https://doi.org/10.1016/0044-8486(94)00207-5

    Article  Google Scholar 

  86. Song, J., Ortiz, C., and Boyce, M.C., Threat-protection mechanics of an armored fish, J. Mech. Behav. Biomed. Mater., 2011, vol. 4, no. 5, pp. 699–712. https://doi.org/10.1016/j.jmbbm.2010.11.011

    Article  Google Scholar 

  87. Stradmeyer, L., Metcalfe, N.B., and Thorpe, J.E., Effect of food pellet shape and texture on the feeding response of juvenile Atlantic salmon, Aquaculture, 1988, vol. 73, nos. 1–4, pp. 217–228. https://doi.org/10.1016/0044-8486(88)90056-7

    Article  Google Scholar 

  88. Tabachek, J.-A.L., The effect of feed particle size on the growth and feed efficiency of arctic charr (Salvelinus alpinus (L.)), Aquaculture, 1988, vol. 71, no. 4, pp. 319–330. https://doi.org/10.1016/0044-8486(88)90201-3

    Article  Google Scholar 

  89. Tucker, J.W., Marine Fish Culture, Boston: Kluwer Acad. Pub., 1998.

    Book  Google Scholar 

  90. Van Wassenbergh, S., Bonte, C., and Michel, K.B., Terrestrial capture of prey by the reedfish, a model species for stem tetrapods, Ecol. Evol., 2017, vol. 7, no. 11, pp. 3856–3860. https://doi.org/10.1002/ece3.2694

    Article  Google Scholar 

  91. Vinogradskaya, M.I. and Kasumyan, A.O., Palatability of water organisms for nile tilapia Oreochromis niloticus (Cichlidae), J. Ichthyol., 2019, vol. 59, no. 3, pp. 389–398. https://doi.org/10.1134/S0032945219030196

    Article  Google Scholar 

  92. Vinogradskaya, M.I., Mikhailova, E.S., and Kasumyan, A.O., Taste preferences, orosensory food testing, and sound production during feeding by the pearl gourami Trichopodus leerii (Osphronemidae), J. Ichthyol., 2017, vol. 57, no. 3, pp. 445–457. https://doi.org/10.1134/S0032945217030122

  93. von Bartheld, C.S. and Meyer, D.L., Central connections of the olfactory bulb in the bichir, Polypterus palmas, reexamined, Cell Tissue Res., 1986, vol. 244, no. 3, pp. 527–535. https://doi.org/10.1007/bf00212530

    Article  CAS  Google Scholar 

  94. Wacker, K., Bartsch, P., and Clemen, G., The development of the tooth pattern and dentigerous bones in Polypterus senegalus (Cladistia, Actinopterygii), Ann. Anat., 2001, vol. 183, no. 1, pp. 37–52. https://doi.org/10.1016/s0940-9602(01)80011-x

    Article  CAS  Google Scholar 

  95. Wankowski, J.W.J. and Thorpe, J.E., The role of food particle size in the growth of juvenile Atlantic salmon (Salmo salar L.), J. Fish. Biol., 1979, vol. 14, no. 4, pp. 351–370. https://doi.org/10.1111/j.1095-8649.1979.tb03530.x

    Article  Google Scholar 

  96. Webb, J.F. and Northcutt, R.G., Ciliated epidermal cells in non-teleost Actinopterygian fish, Acta Zool., 1991, vol. 72, no. 2, pp. 107–111. https://doi.org/10.1111/j.1463-6395.1991.tb00323.x

    Article  Google Scholar 

  97. Westneat, M.W., Evolution of levers and linkages in the feeding mechanisms of fishes, Integr. Comp. Biol., 2004, vol. 44, no. 5, pp. 378–389. https://doi.org/10.1093/icb/44.5.378

    Article  Google Scholar 

  98. Wootton, R.J., Ecology of Teleost Fishes, London: Kluwer Acad. Pub., 1998.

    Google Scholar 

  99. Zeiske, E., Bartsch, P., and Hansen, A., Early ontogeny of the olfactory organ in a basal Actinopterygian fish: Polypterus, Brain Behav Evol., 2009, vol. 73, no. 4, pp. 259–272. https://doi.org/10.1159/000228162

    Article  Google Scholar 

  100. Znotinas, K.R. and Standen, E.M., Aerial and aquatic visual acuity of the grey bichir Polypterus senegalus, as estimated by optokinetic response, J. Fish Biol., 2019, vol. 95, no. 1, pp. 263–273. https://doi.org/10.1111/jfb.13724

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are sincerely grateful to E.A. Marusov and A.A. Kazhlaev (Lomonosov Moscow State University) for help in fish maintenance, literature search, and useful advice on the text of the manuscript. Special thanks go to L.S. Alekseeva for invaluable help in preparing the manuscript.

Funding

The experimental part was supported by the Russian Foundation for Basic Research (project no. 19-04-00367). The study was carried out within the framework of the State Task for Lomonosov Moscow State University (CITIS no. 121032300100-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Kasumyan.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by D. Martynova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sataeva, V.V., Kasumyan, A.O. Orosensory Preferences and Feeding Behavior of Cladistia: A Comparison of Gray Bichir Polypterus senegalus and Saddle Bichir P. endlicherii (Polypteridae). J. Ichthyol. 62, 1501–1520 (2022). https://doi.org/10.1134/S003294522204021X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003294522204021X

Keywords:

Navigation