Skip to main content
Log in

Do Different Back-Calculation Length Models Produce Similar Results? An Integrated Approach for a Leuciscid Fish, Taberestan Spirlin Alburnoides tabarestanensis

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

Back-calculation models are essential tools in fisheries investigation and management programs and are used to determine past lengths and growth from the bony structures of fishes. We assessed and compared four back–calculation models including the direct proportional, Fraser–Lee, scale-proportional and body-proportional, in a leuciscid fish, Alburnoides tabarestanensis in order to assess model performance and to determine if these methods produce similar results. Linear relationships were found between body length and scale radius of A. tabarestanensis. The results demonstrated significant differences among different models in the ages 1 and 2 and no significant differences among the older age classes (3–5). It indicates that the intercept’s effect decreased with increasing the fish length and therefore, any of the four methods can be used in older fish. The back calculated-lengths estimated by the direct proportional were less than the other methods and those estimated by Fraser–Lee and body-proportional were more than the other methods at all age groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Araya, M. and Cubillos, L., El análisis retrospectivo del crecimiento en peces y sus problemas asociados, Gayana (Concepción), 2002, vol. 66, no. 2, pp. 161–179. https://doi.org/10.4067/S0717-65382002000200010

    Article  Google Scholar 

  2. Barbieri, R., Vukić, J., Šanda, R., et al., Alburnoides economoui, a new species of spirlin from Central Greece and redescription of Alburnoides thessalicus (Actinopterygii: Cyprinidae), Biologia, 2017, vol. 72, no. 9, pp. 1075–1088. https://doi.org/10.1515/biolog-2017-0113

    Article  Google Scholar 

  3. Beacham, T.D., Variability in growth during the first 3 years of life of cod (Gadus morhua) in the southern Gulf of St. Lawrence, Can. J. Zool., 1981, vol. 59, no. 4, pp. 614–620.

    Article  Google Scholar 

  4. Beaty, J. and Chen, Y., Can back-calculated lengths based on otoliths measurements provide reliable estimates of Atlantic halibut (Hippoglossus hippoglossus) growth in the Gulf of Maine (USA)? Aquat. Fish., 2017, vol. 2, no. 1, pp. 24–33. https://doi.org/10.1016/j.aaf.2017.01.002

    Article  Google Scholar 

  5. Berg, L.S., Freshwater Fishes of the USSR and Adjacent Countries, Jerusalem: Isr. Progr. Sci. Transl., 1962–1965.

  6. Bogutskaya, N. and Coad, B., A review of vertebral and fin-ray counts in the genus Alburnoides (Teleostei: Cyprinidae) with a description of six new species, Zoosyst. Ross., 2009, vol. 18, no. 1, pp. 126–173.

    Article  Google Scholar 

  7. Çalta, M. and Teksar, C.K., Back-calculation of total lengths of Luciobarbus mystaceus (Pallas, 1814) from scale and otolith measurements, Turk. J. Sci. Technol., 2019, vol. 14, no. 1, pp. 33–36.

    Google Scholar 

  8. Campana, S.E. and Thorrold, S.R., Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can. J. Fish. Aquat. Sci., 2001, vol. 58, no. 1, pp. 30–38.

    Article  Google Scholar 

  9. Çiçek, E., Sigirci, U., Birecikligil, S., and Saylar, Ö., Age, growth and mortality of Caspian spirlin, Alburnoides eichwaldii (De Filippi, 1863), from Aras River Basin in Turkey, Iran. J. Fish. Sci., 2016, vol. 15, no. 3, pp. 1237–1245.

    Google Scholar 

  10. Contreras-Reyes, J.E., Quintero, F.O.L., and Wiff, R., Bayesian modeling of individual growth variability using back-calculation: application to pink cusk-eel (Genypterus blacodes) off Chile, Ecol. Model., 2018, vol. 385, no, pp. 145–153.

  11. Dahl, K., The scales of the herring as a means of determining age, growth and migration, Rep. Nor. Fish. Mar. Invest., 1907, vol. 2, no, pp. 1–39.

  12. Davis, T.L. and West, G.J., Growth and mortality of Lutjanus vittus (Quoy and Gaimard) from the North West Shelf of Australia, Fish. Bull., 1992, vol. 90, no. 2, pp. 395–404.

    Google Scholar 

  13. D’Onghia, G., Basanisi, M., and Tursi, A., Population structure, age and growth of macrourid fish from the upper slope of the Eastern-Central Mediterranean, J. Fish Biol., 2000, vol. 56, no. 5, pp. 1217–1238.

    Article  Google Scholar 

  14. Esmaeili, H.R., Biology of an exotic fish, silver carp, Hypophthalmichthys molitrix (Val., 1844) from Gobindsagar Reservoir, Himachal Pradesh, India, PhD Thesis, Chandigarh: Panjab Univ., 2001.

  15. Esmaeili, H.R., Sayyadzadeh, G., Eagderi, S., and Abbasi, K., Checklist of freshwater fishes of Iran, FishTaxa, 2018, vol. 3, no. 3, pp. 1–95.

    Google Scholar 

  16. Francis, R., Back-calculation of fish length: a critical review, J. Fish Biol., 1990, vol. 36, no. 6, pp. 883–902.

    Article  Google Scholar 

  17. Frost, W. and Kipling, C., The growth of charr, Salvelinus willughbii Günther, in Windermere, J. Fish Biol., 1980, vol. 16, no. 3, pp. 279–289.

    Article  Google Scholar 

  18. Gee, A.S., The distribution and growth of coarse fish in gravel-pit lakes in south-east England, Freshwater Biol., 1978, vol. 8, no. 4, pp. 385–394.

    Article  Google Scholar 

  19. Geldiay, R. and Balık, S., Türkiye Tatlısu Balıkları, Vol. 46, Ders Kitabı Dizini No. 16, Baskı: Ege Üniv., 2007.

  20. Ghojoghi, A., Patimar, R., Jafaryan, H., and Golzarianpour, K., Age and growth of Alburnoides cf. tabarestanensis (Teleostei: Cyprinidae) in the Zav Stream, Southeastern Caspian Sea basin, Iran. J. Ichthyol., 2017, vol. 4, no. 4, pp. 331–339.

    Google Scholar 

  21. Graynoth, E., Growth of landlocked sockeye salmon (Oncorhynchus nerka) in New Zealand, N. Z. J. Mar. Freshwater Res., 1987, vol. 21, no. 1, pp. 15–30.

    Article  Google Scholar 

  22. Hickling, C., The natural history of the hake. Part 3: Seasonal changes in the condition of hake, U.K. Fish. Invest. Ser. II, 1933, vol. 12, no. 1, p. 120.

    Google Scholar 

  23. Hile, R., Age and growth of the rock bass, Ambloplites rupestris (Rafinesque), in Nebish Lake, Wisconsin, Trans. Wis. Acad. Sci. Arts Lett., 1941, vol. 33, pp. 189–337.

    Google Scholar 

  24. Horppila, J. and Nyberg, K., The validity of different methods in the backcalculation of the lengths of roach—a comparison between scales and cleithra, J. Fish Biol., 1999, vol. 54, no. 3, pp. 489–498. https://doi.org/10.1006/jfbi.1998.0883

    Article  Google Scholar 

  25. Johal, M., Esmaeili, H., and Tandon, K., A comparison of back-calculated lengths of silver carp derived from bony structures, J. Fish Biol., 2001, vol. 59, no. 6, pp. 1483–1493.

    Article  Google Scholar 

  26. Jouladeh-Roudbar, A., Ghanavi, H.R., and Doadrio, I., Ichthyofauna from Iranian freshwater: Annotated checklist, diagnosis, taxonomy, distribution and conservation assessment, Zool. Stud., 2020, vol. 59, no. 21. https://doi.org/10.6620/ZS.2020.59-21

  27. Kamal, S., Bakhtiyari, M., Abdoli, A., et al., Life-history variations of killifish (Aphanius sophiae) populations in two environmentally different habitats in central Iran, J. Appl. Ichthyol., 2009, vol. 25, no. 4, pp. 474–478.

    Article  Google Scholar 

  28. Kamilov, B., Morphology of growth structures in silver carp, Hypophthalmichthys molitrix, in relation to estimation of age and growth rate, J. Ichthyol., 1985, vol. 25, no. 1, pp. 49–59.

    Google Scholar 

  29. Klumb, R.A., Bozek, M.A., and Frie, R.V., Proportionality of body to scale growth: validation of two back–calculation models with individually tagged and recaptured small mouth bass and walleyes, Trans. Am. Fish., 1999a, vol. 128, no. 5, pp. 815–831.

    Article  Google Scholar 

  30. Klumb, R.A., Bozek, M.A., and Frie, R.V., Validation of the Dahl–Lea and Fraser–Lee back-calculation models by using oxytetracycline-marked bluegills and bluegill × green sunfish hybrids, North Am. J. Fish. Manage., 1999b, vol. 19, no. 2, pp. 504–514.

    Article  Google Scholar 

  31. Kottelat, M. and Freyhof, J., Handbook of European Freshwater Fishes, Berlin: Cornol and Freyhof, 2007.

    Google Scholar 

  32. Kraiem, M., Etude comparative de L’age et de la croissance du barbeau, Barbus barbus (L.) (Poissons, Cyprinides) dans deux rivieres francaises, Le Rhone et l’Allier, Arch. Hydrobiol., 1982, vol. 96, no. 1, pp. 73–96.

    Google Scholar 

  33. Lea, E., On the methods used in the herring investigations, J. Cons. Int. Explor. Mer., 1910, vol. 53, no, pp. 7–25.

  34. Lee, R., A Review of the Methods of Age and Growth Determination in Fishes by Means of Scales, London: Minist. Agric. Fish., 1920.

    Google Scholar 

  35. Manooch, C.S., III, Age and Growth of Snappers and Groupers, in Tropical Snappers and Groupers, London: Westview, 1987, pp. 329–373.

    Google Scholar 

  36. Manooch, C.S., III and Drennon, C.L., Age and growth of yellowtail snapper and queen triggerfish collected from the US Virgin Islands and Puerto Rico, Fish. Res., 1987, vol. 6, no. 1, pp. 53–68.

    Article  Google Scholar 

  37. Monajjemi, M., Ghorbani, R., Vesaghi, M.J., and Norooz, R.A.R., Age structure, growth and mortality index of spirlin (Alburnoides eichwaldii De Filippii 1863) in Shirud River, Mazandaran Province, J. Fish. Sci. Technol., 2014, vol. 2, no, pp. 67–72.

  38. Morales, N.B., Aplicación de retrocálculo en la determinación del crecimiento de Genypterus capensis (Smith, 1847), Coll. Sci. Pap. Int. Comm. Southeast. Atl. Fish., 1984, vol. 2, pp. 7–12.

    Google Scholar 

  39. Morat, F., Wicquart, J., Schiettekatte, N.M., et al., Individual back-calculated size-at-age based on otoliths from Pacific coral reef fish species, Sci. Data, 2020, vol. 7, no. 1, pp. 1–9.

    Article  Google Scholar 

  40. Mousavi-Sabet, H., Vatandoust, S., and Doadrio, I., Review of the genus Alburnoides Jeitteles, 1861 (Actinopterygii, Cyprinidae) from Iran with description of three new species from the Caspian Sea and Kavir basins, Caspian J. Environ. Sci., 2015, vol. 13, no. 4, pp. 293–331.

    Google Scholar 

  41. Naseka, A. and Bogutskaya, N., Contribution to taxonomy and nomenclature of freshwater fishes of the Amur drainage area and the Far East (Pisces, Osteichthyes), Zoosyst. Ross., 2004, vol. 12, no. 2, pp. 279–290.

    Article  Google Scholar 

  42. Pierce, C.L., Rasmussen, J.B., and Leggett, W.C., Back-calculation of fish length from scales: empirical comparison of proportional methods, Trans. Am. Fish., 1996, vol. 125, no. 6, pp. 889–898.

    Article  Google Scholar 

  43. Ricker, W.E., Back-calculation of fish lengths based on proportionality between scale and length increments, Can. J. Fish. Aquat. Sci., 1992, vol. 49, no. 5, pp. 1018–1026.

    Article  Google Scholar 

  44. Riestra, C.M., Perez Comesaña, J.E., Arias, K.A., et al., Back-calculation of total length of Argentine seabass Acanthistius patachonicus using morphometric relationships of bones and measurements of the body, Mar. Fish. Sci., 2020, vol. 33, no. 1, pp. 69–75.

    Article  Google Scholar 

  45. Seifali, M., Arshad, A., Esmaeili, H., et al., Fecundity and maturation of South Caspian spirlin, Alburnoides sp. (Actinopterygii: Cypriniade) from Iran, Iran. J. Sci. Technol. Trans. A, 2012, vol. 36, no. 2, pp. 181–187.

    Google Scholar 

  46. Tabatabaei, S.N., Hashemzadeh-Segherloo, I., Abdoli, A., et al., Age and growth of spirlins, Alburnoides eichwaldii and A. namaki, from the Caspian, Kavir and Namak basins of Iran, Iran. J. Ichthyol., 2014, vol. 1, no. 4, pp. 266–273.

    Google Scholar 

  47. Tandon, K., Johal, M., and Kukreja, T., Morphometry, age, and growth of silver carp, Hypophthalmichthys molitrix (Valenciennes) from Gobindsagar, Himachal Pradesh, India, Res. Bull. Panjab Univ., 1993, vol. 43, no, pp. 117–128.

  48. Turan, D., Kaya, C., Kalayci, G., et al., Oxynoemacheilus cemali, a new species of stone loach (Teleostei: Nemacheilidae) from the Çoruh River drainage, Turkey, J. Fish Biol., 2019, vol. 94, no. 3, pp. 458–468.

    Article  Google Scholar 

  49. Whitney, R.R. and Carlander, K.D., Interpretation of body-scale regression for computing body length of fish, J. Wildl. Manage., 1956, vol. 20, no. 1, pp. 21–27.

    Article  Google Scholar 

  50. Wintner, S. and Cliff, G., Age and growth determination of the white shark, Carcharodon carcharias, from the east coast of South Africa, Fish. Bull., U.S., 1999, vol. 97, no, pp. 153–169.

Download references

ACKNOWLEDGMENTS

We thank Shiraz University and Alzahra University for supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Esmaeili.

Ethics declarations

Conflict of interest. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Statement of the welfare of animals. Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seifali, M., Sadeghi, R. & Esmaeili, H.R. Do Different Back-Calculation Length Models Produce Similar Results? An Integrated Approach for a Leuciscid Fish, Taberestan Spirlin Alburnoides tabarestanensis. J. Ichthyol. 62, 457–465 (2022). https://doi.org/10.1134/S0032945222030146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945222030146

Keywords:

Navigation