Skip to main content
Log in

Atypical Structure of Olfactory Organ in Moon Wrasse Thalassoma lunare and Sixbar Wrasse T. hardwicke (Labridae)

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

The macromorphology of olfactory organ was studied in moon wrasse Thalassoma lunare and sixbar wrasse T. hardwicke. There are two nostrils in the olfactory organ. Thin walls of the anterior tubular nostril can easily close, the posterior nostril contains a valve. The olfactory rosette is absent and is replaced by the olfactory disk and vertical membrane, morphology structures of the olfactory organ previously unknown in fish. The disk is located on the rostral bottom part of olfactory cavity. Low crest-folds cover the disk surface that are probably the vestigial structures of primary olfactory folds. The expressiveness of crest-folds, disk thickness and shape are different in the moon wrasse and sixbar wrasse. In both species only one large ventilation lacrimal nasal sac is present adjacent below the olfactory cavity with the entrance at the cavity bottom caudal from the disk. A scheme of ventilation of the olfactory cavity is introduced. The possibility of receiving the olfactory information is discussed for wrasses staying in the ground at the time of avoidance of danger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Aiello, B.R., Westneat, M.W., and Hale, M.E., Mechanosensation is evolutionarily tuned to locomotor mechanics, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, no. 17, pp. 4459–4464. https://doi.org/10.1073/pnas.1616839114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Atema, J., Kingsford, M.J., and Gerlach, G., Larval reef fish could use odour for detection, retention and orientation to reefs, Mar. Ecol.: Prog. Ser., 2002, vol. 241, pp. 151–160. https://doi.org/10.3354/meps241151

    Article  Google Scholar 

  3. Barry, K.L. and Hawryshyn, C.W., Spectral sensitivity of the Hawaiian saddle wrasse, Thalassoma duperrey, and implications for visually mediated behavior on coral reefs, Environ. Biol. Fish., 1999, vol. 56, pp. 429–442. https://doi.org/10.1023/A:1007556112449

    Article  Google Scholar 

  4. Belanger, R.M., Smith, C.M., Corkum, L.D., and Zielinski, B.S., Morphology and histochemistry of the peripheral olfactory organ in the round goby, Neogobius melanostomus (Teleostei: Gobiidae), J. Morphol., 2003, vol. 257, pp. 62–71. https://doi.org/10.1002/jmor.10106

    Article  PubMed  Google Scholar 

  5. Bellwood, D.R., Wainwright, P.C., Fulton, C.J., and Hoey, A.S., Functional versatility supports coral reef biodiversity, Proc. R. Soc. B, 2006, vol. 273, pp. 101–107. https://doi.org/10.1098/rspb.2005.3276

    Article  CAS  PubMed  Google Scholar 

  6. Biswas, S., Datta, N.C., Sarkar, S.K., and De, S.K., Anatomical variation in the olfactory apparatus of marine teleosts, J. Res. Biol., 2013, vol. 3, no. 1, pp. 742–748.

    Google Scholar 

  7. Boyle, K.S. and Cox, T.E., Courtship and spawning sounds in bird wrasse Gomphosus varius and saddle wrasse Thalassoma duperrey, J. Fish Biol., 2009, vol. 75, pp. 2670–2681. https://doi.org/10.1111/j.1095-8649.2009.02459.x

    Article  CAS  PubMed  Google Scholar 

  8. Braun, C., Michiels, N.K., Siebeck, U.E., and Sprenger, D., Signaling function of long wavelength colors during agonistic male–male interactions in the wrasse Coris julis, Mar. Ecol.: Prog. Ser., 2014, vol. 504, pp. 277–286. https://doi.org/10.3354/meps10760

    Article  Google Scholar 

  9. Brown, C., Tool use in fishes, Fish Fish., 2012, vol. 13, pp. 105–115. https://doi.org/10.1111/j.1467-2979.2011.00451.x

    Article  Google Scholar 

  10. Burne, R.H., The anatomy of the olfactory organ of teleostean fishes, Proc. Zool. Soc. London, 1909, vol. 2, pp. 610–663.

    Google Scholar 

  11. Chateau, O. and Wantiez, L., Site fidelity and activity patterns of a humphead wrasse, Cheilinus undulatus (Labridae), as determined by acoustic telemetry, Environ. Biol. Fish., 2007, vol. 80, pp. 503–508. https://doi.org/10.1007/s10641-006-9149-6

    Article  Google Scholar 

  12. Cheney, K.L., Bshary, R., and Grutter, A.S., Cleaner fish cause predators to reduce aggression toward bystanders at cleaning stations, Behav. Ecol., 2008, vol. 19, pp. 1063–1067. https://doi.org/10.1093/beheco/arn067

    Article  Google Scholar 

  13. Colefax, A.P., Haywood, M.D.E., and Tibbetts, I.R., Effect of angling intensity on feeding behavior and community structure of subtropical reef‑associated fishes, Mar. Biol., 2016, vol. 163, pp. 1–14. https://doi.org/10.1007/s00227-016-2857-3

    Article  Google Scholar 

  14. Colin, P.L., Aggregation and spawning of the humphead wrasse Cheilinus undulatus (Pisces: Labridae): general aspects of spawning behavior, J. Fish Biol., 2010, vol. 76, pp. 987–1007. https://doi.org/10.1111/j.1095-8649.2010.02553.x

    Article  Google Scholar 

  15. Collar, D.C., Wainwright, P.C., and Alfaro, M., Integrated diversification of locomotion and feeding in labrid fishes, Biol. Lett., 2008, vol. 4, pp. 84–86. https://doi.org/10.1098/rsbl.2007.0509

    Article  PubMed  Google Scholar 

  16. Coppock, A.G., Gardiner, N.M., and Jones, G.P., Olfactory discrimination in juvenile coral reef fishes: response to conspecifics and corals, J. Exp. Mar. Biol. Ecol., 2013, vol. 443, pp. 21–26. https://doi.org/10.1016/J.JEMBE.2013.02.026

    Article  Google Scholar 

  17. Coppock, A.G., Gardiner, N.G., and Jones, G.P., Olfactory responses of coral-reef fishes to coral degradation and crown-of-thorns (Acanthaster planci), Mar. Freshwater Res., 2016, vol. 67, pp. 605–611. https://doi.org/10.1071/MF14424

    Article  Google Scholar 

  18. Cowman, P.F., Bellwood, D.R., and van Herwerden, L., Dating the evolutionary origins of the wrasses (Labridae) and the rise of trophic novelty on coral reefs, Mol. Phylogenet. Evol., 2009, vol. 52, pp. 621–631. https://doi.org/10.1016/j.ympev.2009.05.015

    Article  CAS  PubMed  Google Scholar 

  19. Coyer, J., Use of a rock as an anvil for breaking scallops by the yellowhead wrasse, Halichoeres garnoti (Labridae), Bull. Mar. Sci., 1995, vol. 57, pp. 548–549.

    Google Scholar 

  20. DeLoach, N., Reef Fish Behavior: Florida, Caribbean, Bahamas, Jacksonville, FL: New World, 1999.

    Google Scholar 

  21. Dixson, D.L., Jones, G.P., Munday, P.L., et al., Coral reef fish smell leaves to find island homes, Proc. R. Soc. B, 2008, vol. 275, pp. 2831–2839. https://doi.org/10.1098/rspb.2008.0876

    Article  PubMed  PubMed Central  Google Scholar 

  22. Døving, K.B., Functional properties of the fish olfactory system, in Progress in Sensory Physiology, Berlin: Springer-Verlag, 1986, vol. 6, pp. 39–104.

    Google Scholar 

  23. Døving, K.B., Dubois-Dauphin, M., Holley, A., and Jourdan, F., Functional anatomy of the olfactory organ of fish and the ciliary mechanism of water transport, Acta Zool., 1977, vol. 58, pp. 245–255.

    Article  Google Scholar 

  24. Døving K.B., Stabell, O.B., Östlund-Nilsson, S., and Fisher, R., Site fidelity and homing in tropical coral reef cardinalfish: are they using olfactory cues? Chem. Sens., 2006, vol. 31, pp. 265–272. https://doi.org/10.1093/chemse/bjj028

    Article  Google Scholar 

  25. Dunn, R.P., Tool use by a temperate wrasse, California sheephead Semicossyphus pulcher, J. Fish Biol., 2016, vol. 88, no. 2, pp. 805–810. https://doi.org/10.1111/jfb.12856

    Article  CAS  PubMed  Google Scholar 

  26. Eckes, M.J., Siebeck, U.E., Dove, S., and Grutter, A.S., Ultraviolet sunscreens in reef fish mucus, Mar. Ecol.: Prog. Ser., 2008, vol. 353, pp. 203–211. https://doi.org/10.3354/meps07210

    Article  CAS  Google Scholar 

  27. Eschmeyer’s Catalog of Fishes: Genera, Species, References, Fricke, R., Eschmeyer, W.N., van der Laan, R., Eds., 2018. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. Accessed December, 2020.

  28. Ferry-Graham, L.A., Wainwright, P.C., Westneat, M.W., and Bellwood, D.R., Mechanisms of benthic prey capture in wrasses (Labridae), Mar. Biol., 2002, vol. 141, pp. 819–830. https://doi.org/https://doi.org/10.1007/s00227-002-0882-x

    Article  Google Scholar 

  29. Francini-Filho, R.B. and Sazima, I., A comparative study of cleaning activity of two reef fishes at Fernando de Noronha Archipelago, tropical West Atlantic, Environ. Biol. Fish., 2008, vol. 83, pp. 213–220. https://doi.org/10.1007/s10641-007-9322-6

    Article  Google Scholar 

  30. Fulton, C.J. and Bellwood, D.R., Patterns of foraging in labrid fishes, Mar. Ecol.: Prog. Ser., 2002, vol. 226, pp. 135–142. http://www.int-res.com/abstracts/meps/v226

    Article  Google Scholar 

  31. Gerlach, G., Atema, J., Kingsford, M.J., et al., Smelling home can prevent dispersal of reef fish larvae, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, pp. 858–863. https://doi.org/10.1073_pnas.0606777104

    Article  CAS  Google Scholar 

  32. Goemans, B., Thalassoma hardwicke (Bennett, 1828), Version 04/2019, 2012. http://www.saltcorner.com/AquariumLibrary/browsespecies.php?CritterID=1964.

  33. Gooding, K.B., The olfactory organ of the skipjack, Katsuwonus pelamis, FAO Fish Rep., 1963, vol. 6, pp. 1621–1631.

    Google Scholar 

  34. Grutter, A.S., Ontogenetic variation in the diet of the cleaner fish Labroides dimidiatus and its ecological consequences, Mar. Ecol.: Prog. Ser., 2000, vol. 197, pp. 241–246. https://doi.org/10.3354/meps197241

    Article  Google Scholar 

  35. Grutter, A.S., Rumney, J.G., Sinclair-Taylor, T., et al., Fish mucous cocoons: the ‘mosquito nets’ of the sea, Biol. Lett., 2011, vol. 7, pp. 292–294. https://doi.org/10.1098/rsbl.2010.0916

    Article  PubMed  Google Scholar 

  36. Helfman, G.S., Collette, B.B., and Facey, D.E., The Diversity of Fishes, Oxford: Blackwell, 1997.

    Google Scholar 

  37. Holl, A. and Meinel, W., Das Geruchsorgan des Tiefseefisches Aphanopus carho (Percomorphi, Trichiuridae), Helgol. Wiss. Meeresunters., 1968, vol. 18, pp. 404–423. https://doi.org/10.1007/BF01611678

    Article  Google Scholar 

  38. Holmes, T.H., Wilson, S.K., Vanderklift, M., et al., The role of Thalassoma lunare as a predator of juvenile fish on a sub-tropical coral reef, Coral Reefs, 2012, vol. 31, pp. 1113–1123. https://doi.org/10.1007/s00338-012-0934-8

    Article  Google Scholar 

  39. Holstein, D.M., Paris, C.B., and Mumby, P.J., Consistency and inconsistency in multispecies population network dynamics of coral reef ecosystems, Mar. Ecol.: Prog. Ser., 2014, vol. 499, pp. 1–18. https://doi.org/10.3354/meps10647

    Article  Google Scholar 

  40. Hourigan, T.F., Nakamura, N., Nagahama, Y., et al., Histology, ultrastructure, and in vitro steroidogenesis of the testes of two male phenotypes of the protogynous fish, Thalassoma duperrey (Labridae), Gen. Comp. Endocrinol., 1991, vol. 83, pp. 193–217. https://doi.org/10.1016/0016-6480(91)90023-y

    Article  CAS  PubMed  Google Scholar 

  41. Jones, A., Brown, C., and Gardener, S., Tool use in the spotted tuskfish, Choerodon schoenleinii? Coral Reefs, 2011, vol. 30, p. 865. https://doi.org/10.1007/s00338-011-0790-y

    Article  Google Scholar 

  42. Jones, K.M.M., Home range areas and activity centers in six species of Caribbean wrasses (Labridae), J. Fish Biol., 2005, vol. 66, pp. 150–166. https://doi.org/10.1111/j.1095-8649.2004.00589.x

    Article  Google Scholar 

  43. Jones, K.M.M., Distribution of behaviours and species interactions within home range contours in five Caribbean reef fish species (family Labridae), Environ. Biol. Fish., 2007, vol. 80, pp. 35–49. https://doi.org/10.1007/s10641-006-9104-6

    Article  Google Scholar 

  44. Jones, M.C., Grutter, A.S., and Cribb, T.H., Cleaner fish become hosts: a novel form of parasite transmission, Coral Reefs, 2004, vol. 23, pp. 521–529. https://doi.org/10.1007/s00338-004-0411-0

    Article  Google Scholar 

  45. Kapoor, A.S. and Ojha, P.P., Studies on ventilation of the olfactory chambers of fishes with a critical reevaluation of the role of the accessory nasal sacs, Arch. Biol., 1972, vol. 83, pp. 167–178.

    CAS  Google Scholar 

  46. Kapoor, A.S. and Ojha, P.P., Functional anatomy of the nose and accessory nasal sacs in the teleost Channa punctatus Bloch., Acta Anat. (Basel), 1973, vol. 84, no. 1, pp. 84–96.

    Article  CAS  Google Scholar 

  47. Kasumyan, A.O., The olfactory system in fish: structure, function, and role in behavior, J. Ichthyol., 2004, vol. 44, no. 2, pp. S180–S223.

    Google Scholar 

  48. Kasumyan, A.O., Pashchenko, N.I., and Oan’, L.T.K., Morphology of the olfactory organ in the climbing perch (Anabas testudineus Anabantidae, Perciformes), Zool. Zh., 2021, vol. 100, no. 1, pp. 40–56.

    Google Scholar 

  49. Kazancıoğlu, E., Near, T.J., Hanel, R., and Wainwright, P.C., Influence of sexual selection and feeding functional morphology on diversification rate of parrotfishes (Scaridae), Proc. R. Soc. B, 2009, vol. 276, pp. 3439–3446. https://doi.org/10.1098/rspb.2009.0876

    Article  PubMed  PubMed Central  Google Scholar 

  50. Khaparde, K.P., Baile, V.V., Masram, S.C., et al., Functional significance of olfactory cells of a snakehead Ophiocephalus striatus (Bloch), Bionano Front., 2012, vol. 5, no. 2, pp. 145–148.

    Google Scholar 

  51. Kim, B.H.T., Kim, H.S., and Park, J.Y., The Anatomy and histology of the olfactory organ in the Korean sand goby Favonigobius gymnauchen (Pisces, Gobiidae), Kor. J. Ichthyol., 2016, vol. 28, no. 1, pp. 28–34.

    Google Scholar 

  52. Kramer, D. and Chapman, M., Implications of fish home range size and relocation for marine reserve function, Environ. Biol. Fish., 1999, vol. 55, pp. 65–79. https://doi.org/10.1023/A:1007481206399

    Article  Google Scholar 

  53. Kramer, M.J., Bellwood, O., Fulton, C.J., and Bellwood, D.R., Refining the invertivore: diversity and specialization in fish predation on coral reef crustaceans, Mar. Biol., 2015, vol. 162, pp. 1779–1786. https://doi.org/10.1007/s00227-015-2710-0

    Article  CAS  Google Scholar 

  54. Kuciel, M., Zuwała, K., and Jakubowski, M., A new type of fish olfactory organ structure in Periophthalmus barbarus (Oxudercinae), Acta Zool., 2011, vol. 92, pp. 276–280. https://doi.org/10.1111/j.1463-6395.2010.00459.x

    Article  Google Scholar 

  55. Kuciel, M., Zuwała, K., and Satapoominb, U., Comparative morphology (SEM) of the peripheral olfactory organ in the Oxudercinae subfamily (Gobiidae, Perciformes), Zool. Anz., 2013, vol. 252, no. 4, pp. 424–430. https://doi.org/10.1016/j.jcz.2013.03.002

    Article  Google Scholar 

  56. Lara, M.R., Morphology of the eye and visual acuities in the settlement-intervals of some coral reef fishes (Labridae, Scaridae), Environ. Biol. Fish., 2001, vol. 62, pp. 365–378. https://doi.org/10.1023/A:1012214229164

    Article  Google Scholar 

  57. Lara, M.R., Development of the nasal olfactory organs in the larvae, settlement-stages and some adults of 14 species of Caribbean reef fishes (Labridae, Scaridae, Pomacentridae), Mar. Biol., 2008, vol. 154, no. 1, pp. 51–64. https://doi.org/10.1007/s00227-007-0899-2

    Article  Google Scholar 

  58. Lecchini, D. and Nakamura, Y., Use of chemical cues by coral reef animal larvae for habitat selection, Aquat. Biol., 2013, vol. 19, pp. 231–238. https://doi.org/10.3354/ab00532

    Article  Google Scholar 

  59. Lecchini, D., Osenberg, C.W., Shima, J.S., et al., Ontogenetic changes in habitat selection during settlement in a coral reef fish: ecological determinants and sensory mechanisms, Coral Reefs, 2007, vol. 26, pp. 423–432. https://doi.org/10.1007/s00338-007-0212-3

    Article  Google Scholar 

  60. Lek, E., Fairclough, D.V., Platell, M.E., et al., To what extents are the dietary compositions of three abundant, co-occurring labrid species different and related to latitude, habitat, body size and season? J. Fish Biol., 2011, vol. 78, pp. 1913–1943. https://doi.org/10.1111/j.1095-8649.2011.02961.x

    Article  CAS  PubMed  Google Scholar 

  61. Lek, E., Platell, M.E., Fairclough, D.V., et al., Diets of reef-dwelling labrids (Choerodon species) vary with body size, season and habitat: influence of foraging ability, specialization and opportunism, J. Fish Biol., 2018, vol. 92, pp. 901–928. https://doi.org/10.1111/jfb.13541

    Article  CAS  PubMed  Google Scholar 

  62. Lieske, E. and Myers, R., Coral Reef Fishes: Indo-Pacific & Caribbean (Collins Pocket Guide), London: HarperCollins, 1994.

    Google Scholar 

  63. Losey, G.S., Cronin, T., Goldsmith, T.H., et al., The UV visual world of fishes: a review, J. Fish Biol., 1999, vol. 54, pp. 921–943. https://doi.org/10.1006/jfbi.1998.0919

    Article  Google Scholar 

  64. Mana, R.R. and Kawamura, G., Olfactory organs of two pelagic teleost fish–opah (Lampris guttatus) and dolphin fish (Coryphaena hippurus), S. Pac. Study, 2002, vol. 22, no. 2, pp. 53–64.

    Google Scholar 

  65. Mandal, D.K., Roy, D., and Ghosh, L., Structural organization of the olfactory epithelium of a spotted snakehead fish, Channa punctatus, Acta Ichthyol. Piscat., 2005, vol. 35, no. 1, pp. 45–50.

    Article  Google Scholar 

  66. Marshall, N.J., Communication and camouflage with the same ‘bright’ colors in reef fishes, Philos. Trans. R. Soc. B, 2000, vol. 355, pp. 1243–1248. https://doi.org/10.1098/rstb.2000.0676

    Article  CAS  Google Scholar 

  67. Marty, M.J., Blum, J.E., and Pawlik, J.R., No accounting for taste: palatability of variably defended Caribbean sponge species is unrelated to predator abundance, J. Exp. Mar. Biol. Ecol., 2016, vol. 485, pp. 57–64. https://doi.org/10.1016/j.jembe.2016.08.014

    Article  Google Scholar 

  68. Masterson, C.F., Danilowicz, B.S., and Sale, P.F., Yearly and inter-island variation in the recruitment dynamics of the bluehead wrasse (Thalassoma bifasciatum, Bloch), J. Exp. Mar. Biol. Ecol., 1997, vol. 214, pp. 149–166. https://doi.org/10.1016/S0022-0981(97)00020-8

    Article  Google Scholar 

  69. McClintock, J.B., Baker, B.J., Baumiller, T.K., and Messing, C.G., Lack of chemical defense in two species of stalked crinoids: support for the predation hypothesis for Mesozoic bathymetric restriction, J. Exp. Mar. Biol. Ecol., 1999, vol. 232, pp. 1–7. https://doi.org/10.1016/S0022-0981(98)00003-3

    Article  Google Scholar 

  70. Michiels, N.K., Anthes, N., Hart, N.S., et al., Red fluorescence in reef fish: a novel signaling mechanism? BMC Ecol., 2008, vol. 8, p. 16. https://doi.org/10.1186/1472-6785-8-16

    Article  PubMed  PubMed Central  Google Scholar 

  71. Miller, A.M. and Pawlik, J.R., Do coral reef fish learn to avoid unpalatable prey using visual cues? Anim. Behav., 2013, vol. 85, no. 2, pp. 339–347. https://doi.org/10.1016/j.anbehav.2012.11.002

    Article  Google Scholar 

  72. Mochek, A.D., Etologicheskaya organizatsiya pribrezhnykh soobshchestv morksikh ryb (Ethological Organization of Coastal Marine Fish Communities), Moscow: Nauka, 1987.

  73. Moland, E., Eagle, J.V., and Jones, G.P., Ecology and evolution of mimicry in coral reef fishes, Oceanogr. Mar. Biol., 2005, vol. 43, pp. 455–482.

    Google Scholar 

  74. Morton, J., Platell, M., and Gladstone, W., Differences in feeding ecology among three co-occurring species of wrasse (Teleostei: Labridae) on rocky reefs of temperate Australia, Mar. Biol., 2008, vol. 154, pp. 577–592. https://doi.org/10.1007/s00227-008-0951-x

    Article  Google Scholar 

  75. Nagel, L. and Grutter, A.S., Host preference and specialization in Gnathia sp., a common parasitic isopod of coral reef fishes, J. Fish Biol., 2007, vol. 70, pp. 497–508. https://doi.org/10.1111/j.1095-8649.2007.01320.x

    Article  Google Scholar 

  76. Nelson, J.S., Grande, T.C., and Wilson, M.V.H., Fishes of the World, Hoboken, NJ: Wiley, 2016.

    Book  Google Scholar 

  77. Parin, N.V., Family Labridae, in Zhizn’ zhivotnykh. Tom 4. Chast’ 1. Ryby (The Life of Animals, Vol. 4, Part 1: Fishes), Rass, T.S., Ed., Moscow: Prosveshchenie, 1971, pp. 491–492.

  78. Pashchenko, N.I. and Kasumyan, A.O., Some morphofunctional features of development of olfactory organ in ontogenesis of a minnow, Zool. Zh., 1983, vol. 62, no. 3, pp. 367–377.

    Google Scholar 

  79. Pashchenko, N.I. and Kasumyan, A.O., Morphofunctional features of development of olfactory organ of carps (Cypriniformes, Cyprinidae). I. Morphology and functions of olfactory organs in ontogenesis of the grass carp Ctenopharyngodon idella (Val.), Vopr. Ikhtiol., 1986, vol. 26, no. 2, pp. 303–317.

    Google Scholar 

  80. Pashchenko, N.I. and Kasumyan, A.O., Scanning electron microscopy of development of the olfactory organ in ontogeny of grass carp Ctenopharyngodon idella, J. Ichthyol., 2015, vol. 55, no. 6, pp. 880–899. https://doi.org/10.1134/S0032945215060132

    Article  Google Scholar 

  81. Pashchenko, N.I. and Kasumyan, A.O., Development of the olfactory organ in the ontogeny of carps (Cyprinidae), J. Ichthyol., 2017, vol. 57, no. 1, pp. 136–151. https://doi.org/10.1134/S0032945217010088

    Article  Google Scholar 

  82. Paśko, Ł., Tool-like behavior in the sixbar wrasse, Thalassoma hardwicke (Bennett, 1830), Zoo Biol., 2010, vol. 29, pp. 767–773.

    Article  Google Scholar 

  83. Pawlik, J.R., Chanas, B., Toonen, R.J., and Fenical, W., Defenses of Caribbean sponges against predatory reef fish. 1. Chemical deterrency, Mar. Ecol.: Prog. Ser., 1995, vol. 127, pp. 183–194. https://doi.org/10.3354/meps127183

    Article  CAS  Google Scholar 

  84. Price, S.A., Holzman R., Near T.J., and Wainwright, P.C., Coral reefs promote the evolution of morphological diversity and ecological novelty in labrid fishes, Ecol. Lett., 2011, vol. 14, pp. 462–469. https://doi.org/10.1111/j.1461-0248.2011.01607.x

    Article  CAS  PubMed  Google Scholar 

  85. Randall, J.E., A review of mimicry in marine fishes, Zool. Stud., 2005, vol. 44, no. 3, pp. 299–328.

    Google Scholar 

  86. Randall, J.E., Allen, G.R., and Steene, R.C., Fishes of the Great Barrier Reef and Coral Sea, Bathurst: Crawford, 1997.

  87. Robertson, D.R., Who resembles whom? Mimetic and coincidental look-alikes among tropical reef fishes, PLoS One, 2013, vol. 8, no. 1, art. ID e54939. https://doi.org/10.1371/journal.pone.0054939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rocha, R.A. and Bowen, B.W., Speciation in coral-reef fishes, J. Fish Biol., 2008, vol. 72, pp. 1101–1121. https://doi.org/10.1111/j.1095-8649.2007.01770.x

    Article  Google Scholar 

  89. Sarkar, S.K., Acharya, A., Jana, S., and De, S.K., Macro-anatomical variation of the olfactory apparatus in some Indian teleosts with special reference to their ecological habitat, Folia Morphol., 2014, vol. 73, no. 2, pp. 122–128. https://doi.org/10.13140/RG.2.1.4362.5124

    Article  CAS  Google Scholar 

  90. Schubert, M., Munday, P.L., Caley, M.J., et al., The toxicity of skin secretions from coral-dwelling gobies and their potential role as a predator deterrent, Environ. Biol. Fish., 2003, vol. 67, pp. 359–367. https://doi.org/10.1023/A:1025826829548

    Article  Google Scholar 

  91. Schuijf, A., Baretta, J.W., and Wildschut, J.T., A field investigation on the discrimination of sound direction in Labrus bergylta (Pisces: Perciformes), Neth. J. Zool., 1972, vol. 22, pp. 81–104.

    Article  Google Scholar 

  92. Shepherd, S.A. and Clarkson, P.S., Diet, feeding behavior, activity and predation of the temperate blue-throated wrasse, Notolabrus tetricus, Mar. Freshwater Res., 2001, vol. 52, pp. 311–322. https://doi.org/10.1071/MF99040

    Article  Google Scholar 

  93. Siebeck, U.E. and Marshall, N.J., Transmission of ocular media in labrid fishes, Philos. Trans. R. Soc. B, 2000, vol. 355, pp. 1257–1261. https://doi.org/10.1098/rstb.2000.0679

    Article  CAS  Google Scholar 

  94. Siebeck, U.E. and Marshall, N.J., Ocular media transmission of coral reef fish–can coral reef fish see ultraviolet light? Vision Res., 2001, vol. 41, pp. 133–149. https://doi.org/10.1016/S0042-6989(00)00240-6

    Article  CAS  PubMed  Google Scholar 

  95. Sinha, S.K. and Sinha, R.K., Morphology and the anatomy of the olfactory organs of the marine fish Thynnus thunnina (Cuv. et Val.), Folia Morphol., 1990, vol. 38, no. 2, pp. 169–173.

    CAS  Google Scholar 

  96. Slamet, B. and Hutapea, J.H., First successful hatchery production of Napoleon wrasse at Gondol Research Institute for Mariculture, Bali, S. Pac. Comm. Live Reef Fish Inf. Bull., 2005, vol. 13, pp. 43–44.

    Google Scholar 

  97. Sollid, J., De Angelis, P., Gundersen, K., and Nilsson, G.E., Hypoxia induces adaptive and reversible gross morphological changes in crucian carp gills, J. Exp. Biol., 2003, vol. 206, pp. 3667–3673. https://doi.org/10.1242/jeb.00594

    Article  PubMed  Google Scholar 

  98. Sollid, J., Weber, R.E., and Nilsson, G.E., Temperature alters the respiratory surface area of crucian carp Carassius carassius and goldfish Carassius auratus, J. Exp. Biol., 2005, vol. 208, pp. 1109–1116. https://doi.org/10.1242/jeb.01505

    Article  PubMed  Google Scholar 

  99. Sponaugle, S. and Cowen, R.K., Early life history traits and recruitment patterns of Caribbean wrasses (Labridae), Ecol. Monogr., 1997, vol. 67, pp. 177–202.

    Article  Google Scholar 

  100. Status of Coral Reefs of the World: 2008, Wilkinson, C., Ed., Townsville: Global Coral Reef Monit. Network, 2008.

    Google Scholar 

  101. Steinberg, J.C., Cummings, W.C., Brahy, B.D., and MacBain, J.Y., Further bio-acoustic studies off the west coast of north Bimini, Bahamas, Bull. Mar. Sci., 1965, vol. 15, pp. 942–963.

    Google Scholar 

  102. Stier, A.C. and White, J.W., Predator density and the functional responses of coral reef fish, Coral Reefs, 2014, vol. 33, pp. 235–240. https://doi.org/10.1007/s00338-013-1096-z

    Article  Google Scholar 

  103. Streelman, J.T. and Karl, S.A., Reconstructing labroid evolution with single-copy nuclear DNA, Proc. R. Soc. B, 1997, vol. 264, pp. 1011–1020. https://doi.org/10.1098/rspb.1997.0140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Suzuki, S., Kuwamura, T., Nakashima, Y., et al., Social factors of group spawning as an alternative mating tactic in the territorial males of the threespot wrasse Halichoeres trimaculatus, Environ. Biol. Fish., 2010, vol. 89, pp. 71–77. https://doi.org/10.1007/s10641-010-9691-0

    Article  Google Scholar 

  105. Sweatman, H.P.A., Field evidence that settling coral reef fish larvae detect resident fishes using dissolved chemical cues, J. Exp. Mar. Biol. Ecol., 1988, vol. 124, pp. 163–174. https://doi.org/10.1016/0022-0981(88)90170-0

    Article  Google Scholar 

  106. Tavolga, W.N. and Wodinsky, J., Auditory capacities in fishes: pure tone thresholds in nine species of marine teleosts, Bull. Am. Mus. Nat. Hist., 1963, vol. 126, pp. 97–115.

    Google Scholar 

  107. Tkachenko, K.S., Coral reefs in the face of ecological threats of the 21st century, Biol. Bull. Rev., 2017, vol. 7, no. 1, pp. 64–83.

    Article  Google Scholar 

  108. Topping, D.T., Lowe, C.G., and Caselle, J.E., Home range and habitat utilization of adult California sheephead, Semicossyphus pulcher (Labridae), in a temperate no-take marine reserve, Mar. Biol., 2005, vol. 147, pp. 301–311. https://doi.org/10.1007/s00227-005-1573-1

    Article  Google Scholar 

  109. Tricas, T.C. and Boyle, K.S., Acoustic behaviors in Hawaiian coral reef fish communities, Mar. Ecol.: Prog. Ser., 2014, vol. 511, pp. 1–16. https://doi.org/10.3354/meps10930

    Article  Google Scholar 

  110. Vail, A.L. and McCormick, M.I., Metamorphosing reef fishes avoid predator scent when choosing a home, Biol. Lett., 2011, vol. 7, pp. 921–924. https://doi.org/10.1098/rsbl.2011.0380

    Article  PubMed  PubMed Central  Google Scholar 

  111. Victor, B.C., Duration of the planktonic larval stage of one hundred species of Pacific and Atlantic wrasses (family Labridae), Mar. Biol., 1986, vol. 90, pp. 317–326. https://doi.org/10.1007/BF00428555

    Article  Google Scholar 

  112. Wainwright, P.C., Morphology and ecology: functional basis of feeding constraints in Caribbean labrid fishes, Ecology, 1988, vol. 69, pp. 635–645.

    Article  Google Scholar 

  113. Wainwright, P.C., Bellwood, D.R., and Westneat, M.W., Ecomorphology of locomotion in labrid fishes, Environ. Biol. Fish., 2002, vol. 65, pp. 47–62. https://doi.org/10.1023/A:1019671131001

    Article  Google Scholar 

  114. Wainwright, P.C., Bellwood, D.R., Westneat, M.W., et al., A functional morphospace for the skull of labrid fishes: patterns of diversity in a complex biomechanical system, Biol. J. Linn. Soc., 2004, vol. 82, pp. 1–25. https://doi.org/10.1111/j.1095-8312.2004.00313.x

    Article  Google Scholar 

  115. Walker, J.A. and Westneat, M.W., Performance limits of labriform propulsion and correlates with fin shape and motion, J. Exp. Biol., 2002, vol. 205, pp. 177–187.

    Article  Google Scholar 

  116. Warner, R.R., The role of extreme iteroparity and risk avoidance in the evolution of mating systems, J. Fish Biol., 2005, vol. 53, suppl. A, pp. 82–93. https://doi.org/10.1111/j.1095-8649.1998.tb01019.x

  117. Westneat, M.W., Phylogenetic relationships of the tribe Cheilinini (Labridae: Perciformes), Bull. Mar. Sci., 1993, vol. 52, pp. 351–394.

    Google Scholar 

  118. Westneat, M.W. and Alfaro, M.E., Phylogenetic relationships and evolutionary history of the reef fish family Labridae, Mol. Phylogenet. Evol., 2005, vol. 36, pp. 370–390. https://doi.org/10.1016/j.ympev.2005.02.001

    Article  PubMed  Google Scholar 

  119. Westneat, M.W., Alfaro, M.E., Wainwright, P.C., et al., Local phylogenetic divergence and global evolutionary convergence of skull function in reef fishes of the family Labridae, Proc. R. Soc. B, 2005, vol. 272, pp. 993–1000. https://doi.org/10.1098/rspb.2004.3013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. White, J.W. and Warner, R.R., Behavioral and energetic costs of group membership in a coral reef fish, Oecologia, 2007, vol. 154, pp. 423–433. https://doi.org/10.1007/s00442-007-0838-4

    Article  PubMed  Google Scholar 

  121. Winn, H.E., Formation of a mucous envelope at night by parrot fishes, Zoologica, 1955, vol. 40, pp. 145–148.

    Google Scholar 

  122. Winn, H.E. and Bardach, J.E., Differential food selection by moray eels and a possible role of the mucous envelope of parrot fishes in reduction of predation, Ecology, 1959, vol. 40, pp. 296–298.

    Article  Google Scholar 

  123. Yaakub, S.M., Bellwood, D.R., van Herwerden, L., and Walsh, F.M., Hybridization in coral reef fishes: introgression and bi-directional gene exchange in Thalassoma (family Labridae), Mol. Phylogenet. Evol., 2006, vol. 40, pp. 84–100. https://doi.org/10.1016/j.ympev.2006.02.012

  124. Yamamoto, M., Comparative morphology of fish olfactory organ in teleosts, in Chemoreception in Fishes, Hara, T.J., Ed., New York: Elsevier, 1982, pp. 39–59.

  125. Yamamoto, M. and Ueda, K., Comparative morphology of fish olfactory epithelium. X. Perciformes, Beryciformes, Scorpaeniformes, and Pleuronectiformes, J. Fac. Sci. Tokyo Univ., 1979, vol. 14, pp. 273–297.

    Google Scholar 

  126. Zeiske, E., Theisen, B., and Breucker, H., Structure, development, and evolutionary aspects of the peripheral olfactory system, in Fish Chemoreception, Fish Fish. Ser., vol 6, Hara, T.J., Ed., Dordrecht: Springer-Verlag, 1992, pp. 13–39. https://doi.org/10.1007/978-94-011-2332-7_2

Download references

Funding

The collection of study materials was supported by the Joint Russian-Vietnamese Tropical Research and Technology Center. The experimental part of the study, primary data analysis, analysis of the results, and article writing were conducted as part of the Moscow State University project Noah’s Ark and Russian Foundation for Basic Research (project no. 19–04–00367).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Pashchenko.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by E. Sherstyuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashchenko, N.I., Kasumyan, A.O. & Oanh, L.T. Atypical Structure of Olfactory Organ in Moon Wrasse Thalassoma lunare and Sixbar Wrasse T. hardwicke (Labridae). J. Ichthyol. 61, 348–360 (2021). https://doi.org/10.1134/S0032945221030073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945221030073

Keywords:

Navigation