Skip to main content
Log in

Effect of Temperature on Locomotor Activity and Swimming Performance of Juvenile Roach Rutilus rutilus (Cyprinidae)

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

The results of studying the locomotor activity and swimming performance of juvenile roach Rutilus rutilus at temperatures (7, 16, 25, 28, and 31°C) covering most of the temperature tolerance range of this species are presented. The maximum values of the distance swam and the swimming speed of individuals in an “open field”, the critical water velocity and time to fatigue in a hydrodynamic installation were recorded at a temperature close to the optimum temperature (25°C) for juvenile roach. A greater temperature dependence of the purposeful locomotor activity of juvenile roach was revealed compared with a spontaneous one. High values of swimming performance of 0+ roach in a very wide temperature range reflect good adaptability to life in a temperature-inhomogeneous coast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Beamish, F.W.H., Swimming capacity, in Fish Physiology, Vol. 7: Locomotion, Hoar, W.S. and Randall, D.J., Eds., London: Academic, 1978, pp. 101–187. https://doi.org/10.1016/S1546-5098(08)60164-8

  2. Belokopytin, Yu.S., Energy balance and locomotor activity of sea fishes, Extended Abstract of Doctoral (Biol.) Dissertation, Sevastopol: Inst. Biol. South. Seas, Natl. Acad. Sci. Ukr., 1993.

  3. Brett, J.R., The respiratory metabolism and swimming performance of young sockeye salmon, J. Fish. Res. Board Can., 1964, vol. 21, no. 5, pp. 1183–1226. https://doi.org/10.1139/f64-103

    Article  Google Scholar 

  4. Bryan, J.D., Kelsch, S.W., and Neill, W.H., The maximum power principle in behavioral thermoregulation by fishes, Trans. Am. Fish. Soc., 1990, vol. 119, no. 4, pp. 611–621. https://doi.org/10.1577/1548-8659(1990)119<0611:TMPPIB>2.3.CO;2

    Article  Google Scholar 

  5. Chestnoi, V.N., Maximum speed of fish movement, Rybn. Khoz. (Moscow), 1961, no. 9, pp. 22–27.

  6. Dijk van, P.L.M., Staaks, G., and Hardewig, I., The effect of fasting and refeeding on temperature preference, activity and growth of roach, Rutilus rutilus,Oecologia, 2002, vol. 130, no. 4, pp. 496–504. https://doi.org/10.1007/s00442-001-0830-3

  7. Di Santo, V., Kenaley, C.P., and Lauder, G.V., High postural costs and anaerobic metabolism during swimming support the hypothesis of a U-shaped metabolism-speed curve in fishes, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, no. 49, pp. 13048–13053. https://doi.org/10.1073/pnas.1715141114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Forstner, H. and Wieser, W., Patterns of routine swimming and metabolic rate in juvenile cyprinids at three temperatures, J. Comp. Physiol., B, 1990, vol. 160, no. 1, pp. 71–76. https://doi.org/10.1007/BF00258764

    Article  Google Scholar 

  9. Fry, F.E.J. and Hart, J.S., Cruising speed of goldfish in relation to water temperature, J. Fish. Res. Board Can., 1948, vol. 7, no. 4, pp. 169–175. https://doi.org/10.1139/f47-018

    Article  Google Scholar 

  10. Gilchrist, G.W., Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity, Am. Nat., 1995, vol. 146, no. 2, pp. 252–270. https://doi.org/10.1086/285797

    Article  Google Scholar 

  11. Golovanov, V.K., Temperaturnye kriterii zhiznedeyatel’nosti presnovodnykh ryb (Temperature Criteria of Life Activity of Freshwater Fishes), Moscow: Poligraf-Plyus, 2013.

  12. Golovanov, V.K., Smirnov, A.K., and Kapshai, D.S., Finally selected and higher lethal temperatures for the fries of some freshwater fishes, Tr. Karel. Nauchn. Tsentr, Ross. Akad. Nauk, 2012, no. 2, pp. 70–75.

  13. Hardewig, I. and van Dijk, P.L.M., Is digestive capacity limiting growth at low temperatures in roach? J. Fish Biol., 2003, vol. 62, no. 2, pp. 358–374. https://doi.org/10.1046/j.1095-8649.2003.00027.x

    Article  CAS  Google Scholar 

  14. Huey, R.B. and Kingsolver, J.G., Evolution of resistance to high temperature in ectotherms, Am. Nat., 1993, vol. 142, pp. S21–S46. https://doi.org/10.1086/285521

    Article  Google Scholar 

  15. Ivlev, V.S., Elements of physiological hydrobiology, in Fiziologiya morskikh zhivotnykh (Physiology of Marine Animals), Moscow: Nauka, 1966, pp. 3–45.

  16. Kent, M. and Ojanguren, A.F., The effect of water temperature on routine swimming behavior of new born guppies (Poecilia reticulata), Biol. Open, 2015, vol. 4, no. 4, pp. 547–552. https://doi.org/10.1242/bio.20149829

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kodukhova, Yu.V. and Karabanov, D.P., Morphological changes in population of the roach (Rutilus rutilus, Cyprinidae) from the Pleshcheevo Lake as a result of invasion of the zebra mussel Dreissena polymorpha (Bivalvia), Zool. Zh., 2017, vol. 96, no. 9, pp. 1069–1077. https://doi.org/10.7868/S0044513417090100

    Article  Google Scholar 

  18. Konstantinov, A.S. and Zdanovich, V.V., Characteristics of behavior of fish juveniles in thermal gradient, Vestn. Mosk. Univ., Ser. 16: Biol., 1993, no. 1, pp. 32–38.

  19. Koumoundouros, G., Sfakianakis, D.G., Divanach, P., and Kentouri, M., Effect of temperature on swimming performance of sea bass juveniles, J. Fish Biol., 2002, vol. 60, no. 4, pp. 923–932. https://doi.org/10.1006/jfbi.2002.1902

    Article  Google Scholar 

  20. Kozlovskii, S.V., Reaction of fishes with different physical stamina on external influences, Izv. Samar. Nauchn. Tentra,Ross. Akad. Nauk, 2000, vol. 2, no. 2, pp. 283–289.

    Google Scholar 

  21. Lee, C.G., Farrell, A.P., Lotto, A., et al., The effect of temperature on swimming performance and oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon stocks, J. Exp. Biol., 2003, vol. 206, no. 18, pp. 3239–3251. https://doi.org/10.1242/jeb.00547

    Article  CAS  PubMed  Google Scholar 

  22. Linløkken, A.N., Bergman, E., and Greenberg, L., Effect of temperature and roach Rutilus rutilus group size on swimming speed and prey capture rate of perch Perca fluviatilis and R. rutilus,J. Fish Biol., 2010, vol. 76, no. 4, pp. 900–912. https://doi.org/10.1111/j.1095-8649.2010.02545.x

    Article  Google Scholar 

  23. Litvinov, A.S. and Zakonnova, A.V., Thermal regime in the Rybinsk Reservoir under global warming, Russ. Meteorol. Hydrol., 2012, vol. 37, no. 9, pp. 640–644.

    Article  Google Scholar 

  24. Lyon, J.P., Ryan, T.J., and Scroggie, M.P., Effects of temperature on the fast-start swimming performance of an Australian freshwater fish, Ecol. Freshwater Fish., 2008, vol. 17, no. 1, pp. 184–188. https://doi.org/10.1111/j.1600-0633.2007.00244.x

    Article  Google Scholar 

  25. Méndez, G. and Wieser, W., Metabolic responses to food deprivation and refeeding in juveniles of Rutilus rutilus (Teleostei: Cyprinidae), Environ. Biol. Fish., 1993, vol. 36, pp. 73–81. https://doi.org/10.1007/BF00005981

    Article  Google Scholar 

  26. Mikheev, V.N., Food search and successful feeding of fish juveniles: role of currents and targets, Vopr. Rybolov., 2001, vol. 1, no. 1, pp. 172–178.

    Google Scholar 

  27. Öhlund, G., Hedström, P., Norman, S., et al., Temperature dependence of predation depends on the relative performance of predators and prey, Proc. Biol. Sci., 2015, vol. 282, no. 1799, pp. 1–8. https://doi.org/10.1098/rspb.2014.2254

  28. O’Steen, S. and Bennett, A.F., Thermal acclimation effects differ between voluntary, maximum, and critical swimming velocities in two cyprinid fishes, Physiol. Biochem. Zool., 2003, vol. 76, no. 4, pp. 484–496. https://doi.org/10.1086/376421

    Article  PubMed  Google Scholar 

  29. Ottmar, M.L. and Hurst, T.P., Thermal effects on swimming activity and habitat choice in juvenile Pacific cod (Gadus macrocephalus), Mar. Biol., 2012, vol. 159, no. 10, pp. 2185–2194. https://doi.org/10.1007/s00227-012-2004-8

    Article  Google Scholar 

  30. Pavlov, D.S., Motion and orientation of fish juveniles in water flow, Zool. Zh., 1966, vol. 45, no. 6, pp. 891–896.

    Google Scholar 

  31. Pavlov, D.S., Biologicheskie osnovy upravleniya povedeniem ryb v potoke vody (Biological Principles of Control of Fish Behavior in Water Flow), Moscow: Nauka, 1979.

  32. Pavlov, D.S. and Fomin, V.K., Determination method of critical speed of water flow for fishes, Rybn. Khoz. (Moscow), 1978, no. 11, pp. 30–32.

  33. Pavlov, D.S. and Chernousov, A.N., Change of floating abilities of roach juveniles affected by its metabolic products, Dokl. Akad. Nauk SSSR, 1981, vol. 261, no. 6, pp. 1513–1516.

    Google Scholar 

  34. Pavlov, D.S., Sbikin, Yu.N., Vashchinnikov, A.E., and Mochek, A.D., Effect of illumination and water temperature on critical current speed on fishes, Vopr. Ikhtiol., 1972, vol. 12, no. 4 (75), pp. 769–778.

  35. Persson, L., Temperature-induced shift in foraging ability in two fish species, roach (Rutilus rutilus) and perch (Perca fluviatilis), J. Anim. Ecol., 1986, vol. 55, no. 3, p. 829. https://doi.org/10.2307/4419

    Article  Google Scholar 

  36. Reynolds, W.W. and Casterlin, M.E., Behavioral thermoregulation and locomotor activity of Perca flavescens,Can. J. Zool., 1979, vol. 57, no. 11, pp. 2239–2242. https://doi.org/10.1139/z79-291

    Article  Google Scholar 

  37. Sbikin, Yu.N. and Lepskaya, V.A., Floating ability of sturgeons as a criterion of its survival rate, Rybn. Khoz. (Moscow), 1982, no. 8, pp. 22–23.

  38. Shilov, I.A., Ekologiya (Ecology), Moscow: Vysshaya Shkola, 2001.

    Google Scholar 

  39. Skorobogatov, M.A., Pavlov, D.S., and Barekyan, A.Sh., Relationship of floating ability of the roach Rutilus rutilus (L.) with pressure and inclination angle of a water flow, Vopr. Ikhtiol., 1987, vol. 27, no. 2, pp. 313–319.

    Google Scholar 

  40. Slonim, A.D., Evolyutsiya termoregulyatsii (Evolution of Thermal Regulation), Leningrad: Nauka, 1986.

  41. Smirnov, A.K. and Smirnova, E.S., Reaction of the roach juveniles Rutilus rutilus (Linnaeus, 1758) on heterogeneity of food resources in temperature gradient, Vestn. Astrakh. Gos. Tekh. Univ., Ser.: Rybn. Khoz., 2015, no. 3, pp. 44–52.

  42. Smirnov, A.K. and Smirnova, E.S., Behavior of the common perch juveniles Perca fluviatilis (Percidae) in heterogenic thermal environment with different food supply, Zool. Zh., 2019, vol. 98, no. 2, pp. 182–192. https://doi.org/10.1134/S0044513419020168

    Article  Google Scholar 

  43. Smirnova, E.S., The effect of raising conditions on behavior of juvenile roach Rutilus rutilus (L.) (Cyprinidae), Inland Water Biol., 2010, vol. 3, no. 3, pp. 275–281.

    Article  Google Scholar 

  44. Staaks, G., Kirschbaum, F., and Williot, P., Experimental studies on thermal behavior and diurnal activity rhythms of juvenile European sturgeon (Acipenser sturio), J. Appl. Ichthyol., 1999, vol. 15, nos. 4–5, pp. 243–247. https://doi.org/10.1111/j.1439-0426.1999.tb00243.x

    Article  Google Scholar 

  45. Zdanovich, V.V., Alteration of thermoregulation behavior in juvenile fish in relation to satiation level, J. Ichthyol., 2006, vol. 46, suppl. 2, pp. S188–S193. https://doi.org/10.1134/S0032945206110087

    Article  Google Scholar 

  46. Zdanovich, V.V. and Pushkar’, V.Ya., Influence of food consumption on the respiration intensity and locomotor activity of young sterlet Acipenser ruthenus,J. Ichthyol., 2004, vol. 44, no. 6, pp. 481–483.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Smirnov.

Additional information

Translated by S. Avodkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, A.K., Smirnova, E.S. Effect of Temperature on Locomotor Activity and Swimming Performance of Juvenile Roach Rutilus rutilus (Cyprinidae). J. Ichthyol. 60, 315–324 (2020). https://doi.org/10.1134/S0032945220020186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945220020186

Keywords:

Navigation