Skip to main content
Log in

A Method for Fixation of Fish Larvae for Morphological and Genetic Studies

  • SHORT COMMUNICATIONS
  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

Three aqueous buffer solutions that make it possible to stabilize DNA and also preserve the initial body shape and morphological structures are tested for fixation and preservation of deep-sea fishes’ larvae. Based on the quality assessment of DNA and appearance of the larvae 6 months after fixation, the buffer solution containing dimethyl sulfoxide is recommended for use. Unlike ethanol or formalin, this fixative is nontoxic, nonflammable, does not require storage of samples in the refrigerator, and is also compatible with standard DNA extraction methods or commercial kit protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Betancur-R, R., Wiley, E.O., Arratia, G., et al., Phylogenetic classification of bony fishes, BMC Evol. Biol., 2017, vol. 17, no. 1, p. 162. https://doi.org/10.1186/s12862-017-0958-3

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bucklin, A. and Allen, L.D., MtDNA sequencing from zooplankton after long-term preservation in buffered formalin, Mol. Phylogenet. Evol., 2004, vol. 30, pp. 879–882.

    Article  CAS  Google Scholar 

  3. Campos, P. and Gilbert, T.P., DNA Extraction from formalin-fixed material, in Methods in Molecular Biology, Shapiro, B. and Hofreiter, M., Eds., New York: Humana, 2012, vol. 840, pp. 81–85. https://doi.org/10.1007/978-1-61779-516-9_11

    Google Scholar 

  4. Castro, C.E. and Thomason, I.J., Permeation dynamics and osmoregulation in Aphelenchus avenae, Nematologica, 1973, vol. 19, pp. 100–108. https://doi.org/10.1163/187529273X00150

    Article  CAS  Google Scholar 

  5. Chakraborty, A., Sakai, M., and Iwatsuki, Y., Museum fish specimens and molecular taxonomy: a comparative study on DNA extraction protocols and preservation techniques, J. Appl. Ichthyol., 2006, vol. 22, no. 2, pp. 160–166. https://doi.org/10.1111/j.1439-0426.2006.00718.x

    Article  CAS  Google Scholar 

  6. Dawson, M.N., Raskoff, K.A., and Jacobs, D.K., Field preservation of marine invertebrate tissue for DNA analyses, Mol. Mar. Biol. Biotechnol., 1998, vol. 7, no. 2, pp. 145–152.

    CAS  PubMed  Google Scholar 

  7. Do, H. and Dobrovic, A., Dramatic reduction of sequence artefacts from DNA isolated from formalin fixed cancer biopsies by treatment with uracil-DNA glycosylase, Oncotarget, 2012, vol. 3, pp. 546–558.

    Article  Google Scholar 

  8. Hykin, S.M., Bi, K., and McGuire, J.A., Fixing formalin: a method to recover genomic-scale DNA sequence data from formalin-fixed museum specimens using high-throughput sequencing, PLoS One, 2015, vol. 10, no. 10, p. e0141579.https://doi.org/10.1371/journal.pone.0141579

  9. Johnson, G.D., Paxton, J.R., Sutton, T.T., et al., Deep-sea mystery solved: astonishing larval transformations and extreme sexual dimorphism unite three fish families, Biol. Lett., 2009, vol. 5, pp. 235–239. https://doi.org/10.1098/rsbl.2008.0722

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kearse, M., Moir, R., Wilson, A., et al., Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, 2012, vol. 28, no. 12, pp. 1647–1649.

    Article  Google Scholar 

  11. Kilpatrick, C.W., Noncryogenic preservation of mammalian tissues for DNA extraction: an assessment of storage methods, Biochem. Genet., 2002, vol. 40, nos. 1–2, pp. 53–62. https://doi.org/10.1023/A:1014541222816

    Article  CAS  PubMed  Google Scholar 

  12. Klopfleisch, R., Weiss, A.T.A., and Gruber, A.D., Excavation of a buried treasure—DNA, mRNA, miRNA and protein analysis in formalin fixed, paraffin embedded tissues, Histol. Histopathol., 2011, vol. 26, pp. 797–810.

    CAS  PubMed  Google Scholar 

  13. Longmire, J.L., Maltbie, M., and Baker, R.J., Use of “lysis buffer” in DNA isolation and its implications for museum collections, Occas. Pap. Mus. Texas Tech. Univ., 1997, vol. 163, pp. 1–3.

    Google Scholar 

  14. Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning, a Laboratory Manual, New York: Cold Spring Harbor Lab., 1982.

    Google Scholar 

  15. Nagy, Z.T., A hands-on overview of tissue preservation methods for molecular genetic analyses, Org. Diversity Evol., 2010, vol. 10, no. 1, pp. 91–105. https://doi.org/10.1007/s13127-010-0012-4

    Article  Google Scholar 

  16. NCBI, National Center for Biotechnology Information, 2018. https://www.ncbi.nlm.nih.gov/Blast.cgi.

  17. Quach, N., Goodman, M.F., and Shibata, D., In vitro mutation artifacts after formalin fixation and error prone translesion synthesis during PCR, BMC Clin. Pathol., 2004, vol. 4, no. 1. https://doi.org/10.1186/1472-6890-4-1

  18. Quicke, D.L.J., Lopez-Vaamonde, C., and Belshaw, R., Preservation of hymenopteran specimens for subsequent molecular and morphological study, Zool. Scr., 1999, vol. 28, no. 1–2, pp. 261–267. https://doi.org/10.1046/j.1463-6409.1999.00004.x

    Article  Google Scholar 

  19. Paireder, S., Werner, B., Bailer, J., et al., Comparison of protocols for DNA extraction from long-term preserved formalin fixed tissues, Anal. Biochem., 2013, vol. 439, pp. 152–160. https://doi.org/10.1016/j.ab.2013.04.006

    Article  CAS  PubMed  Google Scholar 

  20. Pisani, G.R., A Guide to Preservation Techniques for Amphibians and Reptiles, Lawrence: Soc. Study Amphibians Reptiles, 1973.

    Google Scholar 

  21. Post, R.J., Flook, P.K., and Millest, A.L., Methods for the preservation of insects for DNA studies, Biochem. Syst. Ecol., 1993, vol. 21, no. 1, pp. 85–92.

    Article  CAS  Google Scholar 

  22. Schander, C. and Halanych, K.M., DNA, PCR and formalinized animal tissue—a short review and protocols, Org. Diversity Evol., 2003, vol. 3, pp. 195–205.

    Article  Google Scholar 

  23. Serth, J., Kuczyk, M.A., Paeslack, U., et al., Quantitation of DNA extracted after micropreparation of cells from frozen and formalin-fixed tissue sections, Am. J. Pathol., 2000, vol. 156, pp. 1189–1196. https://doi.org/10.1016/S0002-9440(10)64989-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seutin, G., White, B.N., and Boag, P.T., Preservation of avian blood and tissue samples for DNA analysis, Can. J. Zool., 1991, vol. 69, pp. 82–90.

    Article  CAS  Google Scholar 

  25. Shedlock, A.M., Haygood, M.G., Pietsch, T.W., and Bentzen, P., Enhanced DNA extraction and PCR amplification of mitochondrial genes from formalin-fixed museum specimens, BioTechniques, 1997, vol. 22, pp. 394–400.

    Article  CAS  Google Scholar 

  26. Srinivasan, M., Sedmak, D., and Jewell, S., Effect of fixatives and tissue processing on the content and integrity of nucleic acids, Am. J. Pathol., 2002, vol. 161, no. 6, pp. 1961–1971.

    Article  CAS  Google Scholar 

  27. Steinke, D. and Hanner, R., The FISH-BOL collaborators' protocol, Mitochondrial DNA, 2011, vol. 22, pp. 10–14. https://doi.org/10.3109/19401736.2010.536538

    Article  CAS  PubMed  Google Scholar 

  28. Strona, G., Stefani, F., and Galli, P., Field preservation of monogenean parasites for molecular and morphological analyses, Parasitol. Int., 2009, vol. 58, pp. 51–54. https://doi.org/10.1016/j.parint.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  29. Vivien, R., Ferrari, B.J.D., and Pawlowski, J., DNA barcoding of formalin-fixed aquatic oligochaetes for biomonitoring, BMC Res. Notes, 2016, vol. 9, pp. 342–345. https://doi.org/10.1186/s13104-016-2140-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ward, R.D., Zemlak, T.S., Innes, B.H., et al., DNA barcoding Australia’s fish species, Philos. Trans. R. Soc., B, 2005, vol. 360, pp. 1847–1857.

  31. Williams, S.T., Safe and legal shipment of tissues samples: does it affect DNA quality? J. Molluscan Stud., 2007, vol. 73, pp. 416–418.

    Article  Google Scholar 

  32. Wong, S.Q., Li, J., Tan, A.Y.-C., et al., Sequence artifacts in a prospective series of formalin-fixed tumours tested for mutations in hotspot regions by massively parallel sequencing, BMC Med. Genomics, 2014, vol. 7, pp. 1–10. https://doi.org/10.1186/1755-8794-7-23

    Article  CAS  Google Scholar 

  33. Yoder, M., Tandingan De Ley, I., King, I., et al., DESS: a versatile solution for preserving morphology and extractable DNA of nematodes, Nematology, 2006, vol. 8, no. 3, pp. 367–376.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported in part by the Russian Science Foundation, project no. 19-14-00026 (expedition works), the Russian Foundation for Basic Research, project no. 18-04-00019, and within the framework of state assignment no. 0112-2018-0002 (laboratory analysis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Gordeeva.

Additional information

Translated by A. Lisenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordeeva, N.V., Kobyliansky, S.G. & Evseenko, S.A. A Method for Fixation of Fish Larvae for Morphological and Genetic Studies. J. Ichthyol. 59, 818–822 (2019). https://doi.org/10.1134/S0032945219050035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945219050035

Keywords:

Navigation